Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holst Centre reports breakthrough in organic RFID

07.02.2008
The plastic RFID tag builds on IMEC’s plastic rectifier technology combined with Polymer Vision’s organic electronics technology and approaches item-level tagging requirements

At yesterday’s International Solid State Circuit Conference, Holst Centre - founded by the Belgian nanoelectronics research center IMEC and the Dutch research center TNO - presents a plastic 64-bit inductively-coupled passive RFID tag operating at 13.56MHz. With a record 780bit/s data readout of 64 bits over 10cm, the device approaches item-level tagging requirements. The tag generates a 5-fold higher bit rate compared to state-of-the-art plastic RFID systems. The achievement paves the way for low-cost high-volume RFID tags to replace barcodes.

The RFID system consists of a low-cost inductive antenna, capacitor, plastic rectifier and plastic circuit, all on foil. The LC antenna resonates at 13.56MHz and powers up the organic rectifier with an AC voltage at this frequency. From this voltage, the rectifier generates the DC supply voltage for the 64-bit organic transponder chip which drives the modulation transistor between the on and off state with a 64bit code sequence. The foil with the transponder chip was processed by Polymer Vision.

Current results build on IMEC’s breakthrough rectifier technology. Organic vertical diodes have been used in the rectifier since they outperform organic transistors for rectification at frequencies at and above 13.56MHz. At an RF magnetic field strength of 1.26A/m the rectifier generates an internal transponder supply voltage of 14V. At this voltage, the 64-bit designed code is read out at a data rate of 787bits/s. The reading distance is up to 10cm. The organic 64bit transponder chip, fabricated by Polymer Vision, is using organic bottom-gate p-type Pentacene thin-film transistors from soluble precursor route. It comprises only some 400 transistors and is thereby significantly smaller than previous designs.

The work was done within the framework of the Holst Centre research program on organic circuitry and was co-funded by the European project POLYAPPLY.

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.imec.be/wwwinter/mediacenter/en/RFID_2008.shtml

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>