Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holst Centre reports breakthrough in organic RFID

07.02.2008
The plastic RFID tag builds on IMEC’s plastic rectifier technology combined with Polymer Vision’s organic electronics technology and approaches item-level tagging requirements

At yesterday’s International Solid State Circuit Conference, Holst Centre - founded by the Belgian nanoelectronics research center IMEC and the Dutch research center TNO - presents a plastic 64-bit inductively-coupled passive RFID tag operating at 13.56MHz. With a record 780bit/s data readout of 64 bits over 10cm, the device approaches item-level tagging requirements. The tag generates a 5-fold higher bit rate compared to state-of-the-art plastic RFID systems. The achievement paves the way for low-cost high-volume RFID tags to replace barcodes.

The RFID system consists of a low-cost inductive antenna, capacitor, plastic rectifier and plastic circuit, all on foil. The LC antenna resonates at 13.56MHz and powers up the organic rectifier with an AC voltage at this frequency. From this voltage, the rectifier generates the DC supply voltage for the 64-bit organic transponder chip which drives the modulation transistor between the on and off state with a 64bit code sequence. The foil with the transponder chip was processed by Polymer Vision.

Current results build on IMEC’s breakthrough rectifier technology. Organic vertical diodes have been used in the rectifier since they outperform organic transistors for rectification at frequencies at and above 13.56MHz. At an RF magnetic field strength of 1.26A/m the rectifier generates an internal transponder supply voltage of 14V. At this voltage, the 64-bit designed code is read out at a data rate of 787bits/s. The reading distance is up to 10cm. The organic 64bit transponder chip, fabricated by Polymer Vision, is using organic bottom-gate p-type Pentacene thin-film transistors from soluble precursor route. It comprises only some 400 transistors and is thereby significantly smaller than previous designs.

The work was done within the framework of the Holst Centre research program on organic circuitry and was co-funded by the European project POLYAPPLY.

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.imec.be/wwwinter/mediacenter/en/RFID_2008.shtml

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>