Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link: software connects researchers across networks

06.02.2008
Researchers from Europe, America and China are creating software to better link research networks, paving the way for future scientific breakthroughs.

Major research network grids across the EU are often developed independently from each other, using different types of software and hardware, making it difficult for scientists working on a particular project to use resources outside their own.

The Open Middleware Infrastructure Institute for Europe (OMII-Europe) project is designed to break down such barriers by adopting common standards for grid middleware.

Project manager Alistair Dunlop, a computer scientist at the UK’s University of Southampton, says many major European research projects have already invested heavily in a specific grid middleware platform. The three major platforms used across Europe are gLite, Globus and Unicore.

OMII-Europe was launched in May 2006 as a means of helping researchers see beyond their particular network grid without having to make additional investments, he says.

Connecting the incompatible
Middleware is the software that mediates between application programs and the network. However, once a project commits to a particular middleware, researchers on that network are limited to the resources accessible via that middleware platform. OMII-Europe’s goal is to build interoperable software components that can work across multiple grid middleware platforms. To achieve this, the OMII-Europe project adopts open standards that are emerging from bodies such as the Open Grid Forum (OGF).

By creating software that works across different middleware platforms, the grids can now be linked and research can be shared more easily.

“Users can then use the same methods for submitting and monitoring jobs to cluster resources, or supercomputers, irrespective of the grid middleware being used,” Dunlop says. “Our vision is that these interoperable components will help break the barriers between grid infrastructures so that users have access to many more resources for their work.”

e-Science breakthrough
The breakthrough could have a significant impact on the way e-Science is carried out. He cites the example of a scientist who previously could only submit computing jobs to resources based on gLite, say. With the OMII-Europe components, the scientist would also be able to make the same submission to those using Globus and Unicore.

“This is a significant advancement and increases the range of computational power available to e-scientists,” Dunlop says.

The EU-funded consortium’s 16 partners from across Europe, the USA and China have currently identified a number of research projects that could benefit from such interoperability.

One such example is the Virtual Physiological Human project, which aims to link scientists, clinicians, engineers, mathematicians and computer scientists in collaborative research into the human body. The intensive modelling techniques needed for such research require high-performance computing resources such as those available via the grid. The interoperability that OMII-Europe can provide will greatly increase the range of resources available to these scientists.

Linking malaria researchers
Other examples are the Wisdom initiative, which focuses on malaria research, and the EU-funded Share project, which aims to reduce the time and costs involved in developing new drugs, says Dunlop.

“OMII-Europe can help make drug discovery over the grid faster and easier,” he notes.

The project team has identified five components essential for grid work and are re-engineering them using emerging standards. The team puts these components through a rigorous quality assessment process before deploying them for public use.

Training has also been a major focus of OMII-Europe. Already, the group has held several training events across Europe and China on various grid technologies. Training material regarding the deployment and use of the OMII-Europe components is made available through courses and web-based tutorials.

The first phase of the project ends in April 2008, when OMII-Europe expects the developed software components to be made available to researchers via the project’s online repository.

Dunlop says the ultimate goal of the project is to integrate the interoperable components back into the middleware platforms. For instance, one of the components is expected to be bundled into the next release of Unicore.

“Other components will follow suit,” he says. “We're at an interesting stage now where we can demonstrate interoperability across the middleware platforms with real-use cases.”

(Reporting with the help of Alistair Dunlop, OMII-Europe project manager, Steve Brewer, deputy project manager, and Nishadi De Silva, technical author and dissemination manager).

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89499

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>