Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link: software connects researchers across networks

06.02.2008
Researchers from Europe, America and China are creating software to better link research networks, paving the way for future scientific breakthroughs.

Major research network grids across the EU are often developed independently from each other, using different types of software and hardware, making it difficult for scientists working on a particular project to use resources outside their own.

The Open Middleware Infrastructure Institute for Europe (OMII-Europe) project is designed to break down such barriers by adopting common standards for grid middleware.

Project manager Alistair Dunlop, a computer scientist at the UK’s University of Southampton, says many major European research projects have already invested heavily in a specific grid middleware platform. The three major platforms used across Europe are gLite, Globus and Unicore.

OMII-Europe was launched in May 2006 as a means of helping researchers see beyond their particular network grid without having to make additional investments, he says.

Connecting the incompatible
Middleware is the software that mediates between application programs and the network. However, once a project commits to a particular middleware, researchers on that network are limited to the resources accessible via that middleware platform. OMII-Europe’s goal is to build interoperable software components that can work across multiple grid middleware platforms. To achieve this, the OMII-Europe project adopts open standards that are emerging from bodies such as the Open Grid Forum (OGF).

By creating software that works across different middleware platforms, the grids can now be linked and research can be shared more easily.

“Users can then use the same methods for submitting and monitoring jobs to cluster resources, or supercomputers, irrespective of the grid middleware being used,” Dunlop says. “Our vision is that these interoperable components will help break the barriers between grid infrastructures so that users have access to many more resources for their work.”

e-Science breakthrough
The breakthrough could have a significant impact on the way e-Science is carried out. He cites the example of a scientist who previously could only submit computing jobs to resources based on gLite, say. With the OMII-Europe components, the scientist would also be able to make the same submission to those using Globus and Unicore.

“This is a significant advancement and increases the range of computational power available to e-scientists,” Dunlop says.

The EU-funded consortium’s 16 partners from across Europe, the USA and China have currently identified a number of research projects that could benefit from such interoperability.

One such example is the Virtual Physiological Human project, which aims to link scientists, clinicians, engineers, mathematicians and computer scientists in collaborative research into the human body. The intensive modelling techniques needed for such research require high-performance computing resources such as those available via the grid. The interoperability that OMII-Europe can provide will greatly increase the range of resources available to these scientists.

Linking malaria researchers
Other examples are the Wisdom initiative, which focuses on malaria research, and the EU-funded Share project, which aims to reduce the time and costs involved in developing new drugs, says Dunlop.

“OMII-Europe can help make drug discovery over the grid faster and easier,” he notes.

The project team has identified five components essential for grid work and are re-engineering them using emerging standards. The team puts these components through a rigorous quality assessment process before deploying them for public use.

Training has also been a major focus of OMII-Europe. Already, the group has held several training events across Europe and China on various grid technologies. Training material regarding the deployment and use of the OMII-Europe components is made available through courses and web-based tutorials.

The first phase of the project ends in April 2008, when OMII-Europe expects the developed software components to be made available to researchers via the project’s online repository.

Dunlop says the ultimate goal of the project is to integrate the interoperable components back into the middleware platforms. For instance, one of the components is expected to be bundled into the next release of Unicore.

“Other components will follow suit,” he says. “We're at an interesting stage now where we can demonstrate interoperability across the middleware platforms with real-use cases.”

(Reporting with the help of Alistair Dunlop, OMII-Europe project manager, Steve Brewer, deputy project manager, and Nishadi De Silva, technical author and dissemination manager).

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89499

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>