Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global positioning tracker may better gauge severity of peripheral artery disease

05.02.2008
A space-based technology may provide an inexpensive and more reliable way to gauge the walking capacity in many patients with peripheral artery disease (PAD), whose clogged leg arteries cause them severe pain when they walk, according to a report in Circulation: Journal of the American Heart Association.

A Global Positioning System (GPS) uses a constellation of at least 24 medium earth orbit satellites that transmit precise microwave signals. This enables a GPS receiver to determine its location, speed, direction and time.

Using the GPS and a simple computer spreadsheet, researchers traced and analyzed the maximal walking distance (MWD) of 24 PAD patients as they strolled through a public park. MWD is the maximum distance a person can walk at one time at a normal pace on a flat surface before leg pain forces them to rest.

“We found that MWD obtained at a person’s usual pace is largely superior to the MWD measured on a treadmill,” said Pierre Abraham, M.D., Ph.D., senior author of the study and a physician in the vascular investigation laboratory at University Hospital in Angers, France. “GPS may allow for a more objective measurement of walking capacity in patients with PAD.”

If additional studies confirm the findings, Abraham envisions the GPS assessing other diseases, including heart failure and low oxygen levels induced by exercise in the blood of respiratory disease patients.

PAD, which is caused by the same build-up of fatty deposits that narrow heart arteries, affects about 8 million Americans. The risk of PAD increases with age, and people with the disorder have a four to five times increased risk of dying of cardiovascular disease.

A treadmill MWD is the standard means to assess PAD severity and a key factor physicians use in proposing treatment. However, treadmill MWDs are time-consuming, must be done in vascular laboratories and don’t correlate with either the maximal walking distance or peoples’ perception of their disability resulting from PAD.

“Patients often report their walking capacity varies from one day to another and also varies from one moment to another within a single stroll,” Abraham said.

Studies using expensive professional GPS devices had previously demonstrated that the satellite-based system could accurately record the distances people walked. However, GPS’s usefulness in following PAD patients had never been tested.

To gain a better understanding of the effect of normal walking on such patients and how this compared with treadmill MWDs, the team equipped 18 men and six women with a $450 commercially available GPS device and analyzed their movements recorded as each walked in a public French park.

“GPS allows for the analysis of the distance walked, of course, but also the speed, duration of resting and the number of walking bouts over a prolonged recording period,” Abraham said.

Study participants, who ranged from 39 to 79 years old, were instructed to walk at their usual speed for at least 45 minutes, including rest breaks required by leg pain. When pain struck, they were told to stop walking rather than slow down. The length of each rest period was left up to the patient.

Analysis of the recorded data revealed that MWDs obtained outdoors were significantly better than treadmill-determined MWDs in three areas:

GPS-measured distance showed a better relationship to the treadmill than the patient’s self-estimates of how far they could walk on a flat surface before pain forced them to stop.

When participants walked unsupervised for 45 minutes outdoors, their MWD before they had to stop was greater than when they walked a hallway for six minutes with a researcher encouraging them every two minutes.

Patients had longer MWDs when they walked in the park than on a treadmill. “Most patients reported that the unconstrained outdoor walking better reflected their usual walking capacity compared to the treadmill,” Abraham said.

Researchers must resolve many clinical and technical questions before measuring MWD via satellite becomes an everyday tool for cardiologists, Abraham said. These include determining:

The reliability of measurements from one GPS device versus another from the same company, or from different companies.
The optimal sampling rate for recording data.
The optimal minimum recording time to determine a MWD under normal living conditions.

Whether patients would walk differently if asked to do so for a specific distance rather than a minimal time.

Even when all such questions are settled, Abraham does not envision GPS replacing treadmills entirely for measuring MWD. They will be needed to compare patients because the treadmill technique is standardized, he said. They also simultaneously record multiple physiological measurements, such as blood pressure, oxygen consumption and heart rate, and test patients who are uncertain about or can’t participate in GPS-based measurements.

Karen Astle | EurekAlert!
Further information:
http://www.heart.org

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>