Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small bit of a CMOS chip holds 2-D through-the-walls radar imager

Applications for 49-pixel probe-and-camera system range from medical imaging to emergency resecue

Two researchers from the USC Viterbi School of Engineering have created a send/receive chip that functions as an active array, sending out a matrix of 49 simultaneous ultrawideband radar probe beams and picking up the returned beam reflections.

Professor Hossein Hashemi of the Viterbi School's Ming Hsieh Department of Electrical Engineering and graduate student Ta-Shun Chu designed and fabricated the device that will be presented February 4 at 2:30 p.m. at the 2008 IEEE International Solid State Circuits Symposium (ISSCC) in San Francisco.

According to Hashemi, "the chip benefits from a novel architecture that allows for the integration of an entire 2D array in a small area of a standard chip," processed by the familiar and economical CMOS process.

Creating the device on CMOS, says Hashemi, "reduces the cost by orders of magnitude, while increasing the functionality. In effect, the chip is a 49-pixel camera operating in the radio band.

"The chip can be used in various radar and imaging system to detect, identify and locate multiple objects simultaneously in a complex environment," Hashemi says. "Potential applications include through-the-wall imaging, and search and rescue missions" (such as finding earthquake victims buried in rubble, and distinguishing survivors from the dead).

Other possible uses include biomedical imaging, security monitoring devices and real-time collision avoidance systems for vehicles, both safety devices for cars with drivers and application in autonomous vehicles.

Last year the two researchers presented a CMOS chip that worked on the same principles but produced only a single beam, offering only single-point one-dimensional detection. The new version's 7x7 array of beams, scanning in "offers many more degrees of freedom for communication and imaging in complex environments," Hashemi said.

Eric Mankin | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>