Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bit of a CMOS chip holds 2-D through-the-walls radar imager

05.02.2008
Applications for 49-pixel probe-and-camera system range from medical imaging to emergency resecue

Two researchers from the USC Viterbi School of Engineering have created a send/receive chip that functions as an active array, sending out a matrix of 49 simultaneous ultrawideband radar probe beams and picking up the returned beam reflections.

Professor Hossein Hashemi of the Viterbi School's Ming Hsieh Department of Electrical Engineering and graduate student Ta-Shun Chu designed and fabricated the device that will be presented February 4 at 2:30 p.m. at the 2008 IEEE International Solid State Circuits Symposium (ISSCC) in San Francisco.

According to Hashemi, "the chip benefits from a novel architecture that allows for the integration of an entire 2D array in a small area of a standard chip," processed by the familiar and economical CMOS process.

Creating the device on CMOS, says Hashemi, "reduces the cost by orders of magnitude, while increasing the functionality. In effect, the chip is a 49-pixel camera operating in the radio band.

"The chip can be used in various radar and imaging system to detect, identify and locate multiple objects simultaneously in a complex environment," Hashemi says. "Potential applications include through-the-wall imaging, and search and rescue missions" (such as finding earthquake victims buried in rubble, and distinguishing survivors from the dead).

Other possible uses include biomedical imaging, security monitoring devices and real-time collision avoidance systems for vehicles, both safety devices for cars with drivers and application in autonomous vehicles.

Last year the two researchers presented a CMOS chip that worked on the same principles but produced only a single beam, offering only single-point one-dimensional detection. The new version's 7x7 array of beams, scanning in "offers many more degrees of freedom for communication and imaging in complex environments," Hashemi said.

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>