Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Education in the third dimension

01.02.2008
Up to now, most learning focused on abstract symbolic knowledge like writing, or passive receptive iconic knowledge through images. But there is a third kind, 'enactive' knowledge, or learning by doing. It is the information we acquire using our whole bodies, and it is a new paradigm in IT-assisted education.

Learning by doing, or by ‘enaction’, started at the dawn of humanity itself, from the time the first proto-human discovered that a bone could become a tool. But it is a practice that has become marginalised in developed societies, as convenience and, increasingly, technology lure people away from craftwork and physical labour.

Today, knowledge mediated by computers is transmitted symbolically, through writing, or iconically with pictures. But not, perhaps, for much longer.

Thanks to an EU-funded research network, called Enactive, there is now a large and thriving research community working on computer-assisted ‘enactive’ knowledge. Experts in robotics, virtual reality, experimental psychology and neuroscience share resources and information.

“Four years ago when we started, there was no research community for IT-assisted, enactive knowledge,” says Enactive’s coordinator Professor Massimo Bergamasco. “There were relatively isolated communities in experimental psychology and neuroscience, but there was nothing that linked those fields with specialists in computer science, or multimedia, or robotics.” Now there is a society, a conference and one of the network’s partners is setting up a lab dedicated to this research.

It is a tremendous achievement, but what will it all mean?

Virtual carpentry
It is easy to imagine various potential applications. How about using a screen, a glove and a handheld ‘chisel’ to become a carpenter? You could change the settings to reflect different types of wood, and you could mess up as many pieces as you like because they would be replaced virtually. But, at the end of it, you would be a fully skilled craftsman.

Does it sound a bit far-fetched? Well, in a separate EU-funded project, called Haptex, researchers have successfully created the ‘feel’ of a virtual fabric. Its texture, strength and elasticity are all transmitted via a glove. First time users are really surprised at how real this virtual fabric feels.

Professor Bergamasco highlights other potential applications. “We see concepts in different fields, like rehabilitation, surgery, industrial training, space exploration. The number of potential applications is virtually limitless.”

Imagine a surgeon practicing a delicate procedure on a virtual patient, until he or she becomes expert. Or, one day perhaps, it will be possible to model an individual patient and practise a particularly tricky operation virtually, before trying the real thing.

It is all built on the idea that we learn better by doing something than by reading about it, or even watching a video.

But the real wonder of this research is that experts do not yet know what marvels enactive knowledge could yet unlock. Creating computer-assisted, enactive devices will provide tremendous tools to disciplines like experimental psychology and neuroscience.

Imagine a language interface that hears what you say and responds appropriately. Will you learn better, faster, or not? What does ‘whole body’ education tell us about human psychology, evolution and learning mechanisms? And what new potential enactive applications will those experimental discoveries enable?

Uncanny reality
We do know that, in the shorter term, it will be discoveries made through a combination of haptic devices, audio and video. Haptic devices are interfaces that provide a physical feedback to the user. Typically they appear, in a very primitive application, with video game control pads. The pad shakes each time an impact occurs on screen, for instance.

There are far more sophisticated devices, however, like the haptic glove created by Haptex. Combined with audio and vision, haptic devices can provide uncannily realistic impressions of reality.

“Most of the work within the next few years focuses on audio, vision and touch, there is no real work on taste or smell yet. Different groups are looking at different things, like audio with haptics, video with haptics or combinations... The network has really inspired a lot of activity,” explains Bergamasco.

“In fact, the Network of Excellence was a superb platform to promote this field,” he reveals. “We had 25 groups, research institutes, mostly in Europe but with some in the USA and Canada, and the degree of interaction between them now is amazing.”

It means that the whole field of technology assisted, enactive knowledge is just at its very beginnings, but thanks to the work of the Enactive Network of Excellence, the field is set to expand rapidly.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89485

More articles from Information Technology:

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Electron-photon small-talk could have big impact on quantum computing
23.12.2016 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>