Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Education in the third dimension

01.02.2008
Up to now, most learning focused on abstract symbolic knowledge like writing, or passive receptive iconic knowledge through images. But there is a third kind, 'enactive' knowledge, or learning by doing. It is the information we acquire using our whole bodies, and it is a new paradigm in IT-assisted education.

Learning by doing, or by ‘enaction’, started at the dawn of humanity itself, from the time the first proto-human discovered that a bone could become a tool. But it is a practice that has become marginalised in developed societies, as convenience and, increasingly, technology lure people away from craftwork and physical labour.

Today, knowledge mediated by computers is transmitted symbolically, through writing, or iconically with pictures. But not, perhaps, for much longer.

Thanks to an EU-funded research network, called Enactive, there is now a large and thriving research community working on computer-assisted ‘enactive’ knowledge. Experts in robotics, virtual reality, experimental psychology and neuroscience share resources and information.

“Four years ago when we started, there was no research community for IT-assisted, enactive knowledge,” says Enactive’s coordinator Professor Massimo Bergamasco. “There were relatively isolated communities in experimental psychology and neuroscience, but there was nothing that linked those fields with specialists in computer science, or multimedia, or robotics.” Now there is a society, a conference and one of the network’s partners is setting up a lab dedicated to this research.

It is a tremendous achievement, but what will it all mean?

Virtual carpentry
It is easy to imagine various potential applications. How about using a screen, a glove and a handheld ‘chisel’ to become a carpenter? You could change the settings to reflect different types of wood, and you could mess up as many pieces as you like because they would be replaced virtually. But, at the end of it, you would be a fully skilled craftsman.

Does it sound a bit far-fetched? Well, in a separate EU-funded project, called Haptex, researchers have successfully created the ‘feel’ of a virtual fabric. Its texture, strength and elasticity are all transmitted via a glove. First time users are really surprised at how real this virtual fabric feels.

Professor Bergamasco highlights other potential applications. “We see concepts in different fields, like rehabilitation, surgery, industrial training, space exploration. The number of potential applications is virtually limitless.”

Imagine a surgeon practicing a delicate procedure on a virtual patient, until he or she becomes expert. Or, one day perhaps, it will be possible to model an individual patient and practise a particularly tricky operation virtually, before trying the real thing.

It is all built on the idea that we learn better by doing something than by reading about it, or even watching a video.

But the real wonder of this research is that experts do not yet know what marvels enactive knowledge could yet unlock. Creating computer-assisted, enactive devices will provide tremendous tools to disciplines like experimental psychology and neuroscience.

Imagine a language interface that hears what you say and responds appropriately. Will you learn better, faster, or not? What does ‘whole body’ education tell us about human psychology, evolution and learning mechanisms? And what new potential enactive applications will those experimental discoveries enable?

Uncanny reality
We do know that, in the shorter term, it will be discoveries made through a combination of haptic devices, audio and video. Haptic devices are interfaces that provide a physical feedback to the user. Typically they appear, in a very primitive application, with video game control pads. The pad shakes each time an impact occurs on screen, for instance.

There are far more sophisticated devices, however, like the haptic glove created by Haptex. Combined with audio and vision, haptic devices can provide uncannily realistic impressions of reality.

“Most of the work within the next few years focuses on audio, vision and touch, there is no real work on taste or smell yet. Different groups are looking at different things, like audio with haptics, video with haptics or combinations... The network has really inspired a lot of activity,” explains Bergamasco.

“In fact, the Network of Excellence was a superb platform to promote this field,” he reveals. “We had 25 groups, research institutes, mostly in Europe but with some in the USA and Canada, and the degree of interaction between them now is amazing.”

It means that the whole field of technology assisted, enactive knowledge is just at its very beginnings, but thanks to the work of the Enactive Network of Excellence, the field is set to expand rapidly.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89485

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>