Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Education in the third dimension

01.02.2008
Up to now, most learning focused on abstract symbolic knowledge like writing, or passive receptive iconic knowledge through images. But there is a third kind, 'enactive' knowledge, or learning by doing. It is the information we acquire using our whole bodies, and it is a new paradigm in IT-assisted education.

Learning by doing, or by ‘enaction’, started at the dawn of humanity itself, from the time the first proto-human discovered that a bone could become a tool. But it is a practice that has become marginalised in developed societies, as convenience and, increasingly, technology lure people away from craftwork and physical labour.

Today, knowledge mediated by computers is transmitted symbolically, through writing, or iconically with pictures. But not, perhaps, for much longer.

Thanks to an EU-funded research network, called Enactive, there is now a large and thriving research community working on computer-assisted ‘enactive’ knowledge. Experts in robotics, virtual reality, experimental psychology and neuroscience share resources and information.

“Four years ago when we started, there was no research community for IT-assisted, enactive knowledge,” says Enactive’s coordinator Professor Massimo Bergamasco. “There were relatively isolated communities in experimental psychology and neuroscience, but there was nothing that linked those fields with specialists in computer science, or multimedia, or robotics.” Now there is a society, a conference and one of the network’s partners is setting up a lab dedicated to this research.

It is a tremendous achievement, but what will it all mean?

Virtual carpentry
It is easy to imagine various potential applications. How about using a screen, a glove and a handheld ‘chisel’ to become a carpenter? You could change the settings to reflect different types of wood, and you could mess up as many pieces as you like because they would be replaced virtually. But, at the end of it, you would be a fully skilled craftsman.

Does it sound a bit far-fetched? Well, in a separate EU-funded project, called Haptex, researchers have successfully created the ‘feel’ of a virtual fabric. Its texture, strength and elasticity are all transmitted via a glove. First time users are really surprised at how real this virtual fabric feels.

Professor Bergamasco highlights other potential applications. “We see concepts in different fields, like rehabilitation, surgery, industrial training, space exploration. The number of potential applications is virtually limitless.”

Imagine a surgeon practicing a delicate procedure on a virtual patient, until he or she becomes expert. Or, one day perhaps, it will be possible to model an individual patient and practise a particularly tricky operation virtually, before trying the real thing.

It is all built on the idea that we learn better by doing something than by reading about it, or even watching a video.

But the real wonder of this research is that experts do not yet know what marvels enactive knowledge could yet unlock. Creating computer-assisted, enactive devices will provide tremendous tools to disciplines like experimental psychology and neuroscience.

Imagine a language interface that hears what you say and responds appropriately. Will you learn better, faster, or not? What does ‘whole body’ education tell us about human psychology, evolution and learning mechanisms? And what new potential enactive applications will those experimental discoveries enable?

Uncanny reality
We do know that, in the shorter term, it will be discoveries made through a combination of haptic devices, audio and video. Haptic devices are interfaces that provide a physical feedback to the user. Typically they appear, in a very primitive application, with video game control pads. The pad shakes each time an impact occurs on screen, for instance.

There are far more sophisticated devices, however, like the haptic glove created by Haptex. Combined with audio and vision, haptic devices can provide uncannily realistic impressions of reality.

“Most of the work within the next few years focuses on audio, vision and touch, there is no real work on taste or smell yet. Different groups are looking at different things, like audio with haptics, video with haptics or combinations... The network has really inspired a lot of activity,” explains Bergamasco.

“In fact, the Network of Excellence was a superb platform to promote this field,” he reveals. “We had 25 groups, research institutes, mostly in Europe but with some in the USA and Canada, and the degree of interaction between them now is amazing.”

It means that the whole field of technology assisted, enactive knowledge is just at its very beginnings, but thanks to the work of the Enactive Network of Excellence, the field is set to expand rapidly.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89485

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>