Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Processor design gets mathematical sweetener

30.01.2008
A breakthrough microchip specification language will allow ambiguous English to be replaced by a mathematically precise description of processor functions and design. Better yet, it applies to every stage of microprocssor design. The upshot could be millions of euros saved by microchip producers.

Microchip design is a tricky business. First, there is a question of functionality. Engineers describe, in minute detail, what a particular microchip must do, in plain English. It is an essential task detailing the chip specifications for each stage of the microchip creation process: design, fabrication and verification.

Unfortunately, English is not a mathematically precise language. So, problems of interpretation are rife. Worse, at each development stage engineers are obliged to render the English specification or ‘spec’ list into a mathematically precise function set.

But worst of all, each stage uses different languages, and those languages vary between microchip companies. It is hugely inefficient and prone to error.

That is all set to change. “Before property specification language (PSL), there was no industry standard for describing microchip properties,” says Cindy Eisner, coordinator of PROSYD and Senior Architect for Verification Technologies at the IBM Haifa Research Laboratory. “Now the IEEE has adopted PSL as a standard specification language. So, we now have an industry standard for microprocessor design.”

PROSYD’s mission was, first, to create tools to deploy PSL for chip design, fabrication and verification. The project then used these tools to demonstrate PSL’s benefits. Finally, it sought to foster a revolution in chip design by promoting PSL as a new industry standard.

Mission accomplished, with aplomb. The EU project sought to reduce design errors by 50% but also increase design efficiency. At the end of the two-year €7 million project, PROSYD demonstrated a staggering reduction in design errors of up to 100%, at the same time increasing design efficiency by 16 to 22%.

After designers become more familiar with the new toolset and language, an even more impressive gain in efficiency can be expected, suggests Eisner.

It seems obvious now. If one stage of microchip development needs a precise description language, then should we not describe every stage the same way?

Or perhaps not so obvious…
Not quite. PSL grew out of IBM’s verification language SUGAR created in 1994 to standardise just the verification stage. Before SUGAR, there was no standard way to verify a chip. Developers made up their own languages and passed them down, like grandma’s prized soup recipes.

But once SUGAR arrived, microprocessor design hit upon a Eureka moment: why not describe every stage of chip creation the same way! Then the IEEE, the professional association for electronic engineers, took up the task and PSL/SUGAR became the standard.

PROSYD’s key contribution is the large suite of tools that link PSL across the microchip production process. There are over 16 tools in the set, which make PSL easy to deploy.

This is not the only achievement by PROSYD, though. The project’s case studies offer firm proof of the benefits of PSL and the PROSYD tools.

The project also led to unexpected benefits. PROSYD developed a very cool tool that will take a list of desired properties and actually design a microprocessor sub-circuit with those functions – something like machines creating themselves.

“It’s a very early version of the tool,” remarks Eisner, “you couldn’t use it to design a whole chip, but it could be useful to design a simple sub-circuit. It would be very useful for circuits that are fairly simple, but time-consuming to do.”

PROSYD’s long-term goal, not envisioned for the lifetime of the original project, was nothing less than a revolution in the microchip industry. That seems to be happening already. Actors outside the project are taking PROSYD and running with it, setting up conferences and producing materials to disseminate PSL and PROSYD tools. So now, finally, microchip design gets a unified, mathematically precise description language.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89179

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>