Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Processor design gets mathematical sweetener

30.01.2008
A breakthrough microchip specification language will allow ambiguous English to be replaced by a mathematically precise description of processor functions and design. Better yet, it applies to every stage of microprocssor design. The upshot could be millions of euros saved by microchip producers.

Microchip design is a tricky business. First, there is a question of functionality. Engineers describe, in minute detail, what a particular microchip must do, in plain English. It is an essential task detailing the chip specifications for each stage of the microchip creation process: design, fabrication and verification.

Unfortunately, English is not a mathematically precise language. So, problems of interpretation are rife. Worse, at each development stage engineers are obliged to render the English specification or ‘spec’ list into a mathematically precise function set.

But worst of all, each stage uses different languages, and those languages vary between microchip companies. It is hugely inefficient and prone to error.

That is all set to change. “Before property specification language (PSL), there was no industry standard for describing microchip properties,” says Cindy Eisner, coordinator of PROSYD and Senior Architect for Verification Technologies at the IBM Haifa Research Laboratory. “Now the IEEE has adopted PSL as a standard specification language. So, we now have an industry standard for microprocessor design.”

PROSYD’s mission was, first, to create tools to deploy PSL for chip design, fabrication and verification. The project then used these tools to demonstrate PSL’s benefits. Finally, it sought to foster a revolution in chip design by promoting PSL as a new industry standard.

Mission accomplished, with aplomb. The EU project sought to reduce design errors by 50% but also increase design efficiency. At the end of the two-year €7 million project, PROSYD demonstrated a staggering reduction in design errors of up to 100%, at the same time increasing design efficiency by 16 to 22%.

After designers become more familiar with the new toolset and language, an even more impressive gain in efficiency can be expected, suggests Eisner.

It seems obvious now. If one stage of microchip development needs a precise description language, then should we not describe every stage the same way?

Or perhaps not so obvious…
Not quite. PSL grew out of IBM’s verification language SUGAR created in 1994 to standardise just the verification stage. Before SUGAR, there was no standard way to verify a chip. Developers made up their own languages and passed them down, like grandma’s prized soup recipes.

But once SUGAR arrived, microprocessor design hit upon a Eureka moment: why not describe every stage of chip creation the same way! Then the IEEE, the professional association for electronic engineers, took up the task and PSL/SUGAR became the standard.

PROSYD’s key contribution is the large suite of tools that link PSL across the microchip production process. There are over 16 tools in the set, which make PSL easy to deploy.

This is not the only achievement by PROSYD, though. The project’s case studies offer firm proof of the benefits of PSL and the PROSYD tools.

The project also led to unexpected benefits. PROSYD developed a very cool tool that will take a list of desired properties and actually design a microprocessor sub-circuit with those functions – something like machines creating themselves.

“It’s a very early version of the tool,” remarks Eisner, “you couldn’t use it to design a whole chip, but it could be useful to design a simple sub-circuit. It would be very useful for circuits that are fairly simple, but time-consuming to do.”

PROSYD’s long-term goal, not envisioned for the lifetime of the original project, was nothing less than a revolution in the microchip industry. That seems to be happening already. Actors outside the project are taking PROSYD and running with it, setting up conferences and producing materials to disseminate PSL and PROSYD tools. So now, finally, microchip design gets a unified, mathematically precise description language.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89179

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>