Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mappy for RFID network development… turn right at the next supplier!

Agreed standards help ensure coordinated, efficient and rapid development of new technologies such as RFID radio tracking. A major report maps the stakeholders and rules affecting RFID and provides ground rules for successful standardisation.

When a technology is developing as rapidly as radio frequency identification (RFID) with the active participation of a huge range of industry sectors worldwide – from automotive manufacturing to pharmaceutical distribution and fashion retailing – it is not surprising that overlapping and, at times, conflicting standards develop, according to Peter Gabriel, spokesman for a European research project in this area.

RFID needs a coherent international approach to frequency and radio regulation, communication and data standards, network standards, application standards, as well as safety issues. Some areas require European or even global agreements, others simply require an agreed cross-sectoral approach. The complication is that the standards need to develop in parallel with the innovative research.

In such a complicated and multi-layered environment, RFID and the network that will share RFID-generated ‘Electronic Product Code’ data across the internet is developing rather quickly, according to Gabriel of the CE RFID project.

“The establishment of EPCglobal was a major breakthrough,” he says. EPCglobal is an industry-led organisation that is undertaking the establishment of RFID and Electronic Product Code standards. “[It] started just five years ago and they have built a complete system of standardisation documents… much quicker than would have been the case for an ISO standard.”

However, ISO’s reputation means that its stamp of approval is very important to anything EPCglobal develops. Gabriel points to EPCglobal’s ‘Gen 2’ air interface standard (protocols for RFID tag-to-reader interfaces) that received its ISO 18000-6 label. That speedy establishment of the standard provided a bedrock for future development.

Coordinating dynamic development
The CE RFID report provides an extensive overview of the main industries with an interest in RFID and the level of standardisation they have achieved.

The report draws on the lessons from previous investigations that tackled the same problem: how to ensure the rapid establishment of standards where the range of stakeholders is broad and the technology developing fast.

While European companies are often technology leaders in RFID and EPC, that has not translated to leadership in standards development – a particular interest to the sponsors of this EU-funded report.

The report concludes that fewer and broader standards are needed; a coordinated standardisation roadmap between the main stakeholders (especially EPCglobal and ISO) would ease development; standards should be easier to understand and work with; and regional or even national standards should be avoided where international standards are required.

The time and money European companies need to invest in a wide range of patents to cover their interests in different Member States is one example of how Europe is disadvantaged by its lack of coordination.

Another example in the report is the need for a single European radio regulation authority managing the spectrum. RFID advocates face some powerful rivals in the contest for limited frequencies.

Take UHF in Europe, RFID has only been awarded from 865-868 MHz. In the long run, this limited bandwidth is not sufficient for the expected mass applications. Moreover, the sector lacks the level of radio frequency harmonisation already reached for mobile phones.

The opportunity is now!
Many of the most powerful organisations with an interest in RFID are users rather than technology providers. Big retailers, logistics companies and others need to press the need for RFID on regulators, Gabriel suggests. Broadcasters’ move from analogue to digital will create a ‘digital dividend’ over the next 15 years. However, decisions about who will gain control of the freed-up frequencies will be made in the next two years. There is a need to act now!

Some of the frequencies available for RFID in Europe or China have already been awarded to telecoms companies in the USA for their cell-phone networks.

“We will never get a uniform spectrum in UHF,” says Gabriel. “That is not a major problem as all the frequency bands are so close. There will be minor technical problems but nothing the technology providers cannot cope with.”

The next step on the road to the complete RFID-EPC vision will be the EPCglobal internet network. Just as there were a series of air interface standards before the success of ‘Gen 2’, he expects the EPCglobal network will develop in steps.

“There will be first implementations and pilot projects for the great architecture of IT systems that is needed,” he says. “After the first standard, there will need to be a reality check. That will occur in the next one or two years.”

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>