Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical fibre: secure in all the chaos

21.01.2008
Secure messages hidden in chaotic waveforms, transmitted at up to 10 gigabits per second, is the vision behind a group of dedicated European researchers. Now they are prototyping the equipment that could make the vision a reality.

Hiding a message within a chaotic transmission offers a way of securing information exchange – provided the message can be distinguished from the chaos by the receiver.

Two years ago, members of OCCULT, a European research project, showed that messages could be sent at gigabit per second rates over 100km of the standard fibre-optic network of the city of Athens, using a chaotic mix of light frequencies with massive variation in amplitudes.

And the message was received with low bit error rates. Yet, anyone tapping into the fibre-optic cable, attempting to intercept the message without highly specialised knowledge and equipment, would have been unable to distinguish it from the chaotic light ‘noise’ that surrounded it.

Now researchers in a follow-on project (Photonic Integrated Components Applied to Secure chaoS encoded Optical communications systems – PICASSO) that is also funded by the European Commission are designing and testing two integrated and stable chaotic sources. In effect, these are the first prototypes for a kit that will allow chaotic transmissions to be used as a standard security measure by organisations, such as banks and governments.

They are also researching techniques that will enable chaotic transmissions to be made and received at tens of gigabits per second.

Synchronisation delivers communication
The key to sending signals using chaotic light sources is synchronisation. Chaotic systems are unpredictable because they are affected by many – often millions – of tiny events. The potential effect on the weather of the beat of a butterfly’s wing is the most famous example of this.

But the fact that they are not predictable does not mean that they are random. In fact, the little events are interdependent and generate discernible patterns in the chaos. A couple of decades ago it was discovered that if, under the right conditions, two chaotic systems start to affect each other, they will synchronise their chaotic motions.

Laboratory experiments soon confirmed that lasers transmitting light in patterns that were chaotic in time and space would synchronise when they received light from one another through space or optical fibre.

The next step was to ‘fold’ a message into the chaotic waveform. The receiver is able to discern the message by subtracting the (synchronised) chaotic waveform he is generating from the chaotic waveform, plus message, that he is receiving.

The OCCULT team (Optical chaos Communications Using Laser-Diodes Transmitters) took the principles of synchronised chaotic transmissions out into the real world. While the signal transmitted over the Athens network was less than one second long, it proved that the technique worked.

Stable chaotic sources
PICASSO’s first challenge was to build integrated devices incorporating laser diodes that were capable of acting as stable chaotic sources. They have come up with two devices. The first is a single chip about 1cm in length which is being prototyped in a Berlin laboratory. The second is a hybrid device about 15cm long consisting of a laser and a small piece of fibre, using an oil coating to maintain temperature and feedback strength.

“We expect both to work well quite soon,” says Claudio Mirasso, project coordinator on the OCCULT project and a member of the PICASSO team.

Consistency is a key goal for the mechanical parts. Sending longer signals is dependent on maintaining synchronisation between the two chaotic light sources for long periods, enabling data transmission at 10 gigabits per second.

“One of the main problems could be temperature,” says Mirasso. “Changes in temperature lead to deviations in wavelength and you can lose synchronisation easily. We are working on mechanisms that could offer better stabilisation, but at this stage we don’t know how much our new devices will drift with temperature.”

During a second phase of PICASSO, the research team will investigate increasing the rate of transmission using wavelength division multiplexing, where a number of signals are transmitted together at clearly separated wavelengths.

“You have to define the width of the channels very well,” comments Mirasso. “But in many ways it is not very different from normal wavelength division multiplexing. Perhaps ten or more channels would be possible.”

The security offered by chaotic waveforms does not match the complete security of quantum cryptography. But the rate of transmission is far higher – a security protection in itself. And attempts to break into the optical fibre and interpret the signal would be extremely difficult – if not impossible at the moment.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89434

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>