Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crowd-beating mobile network management

10.01.2008
During the festive season, high streets and shopping malls across Europe are packed with shoppers armed with mobile phones. But the big crowds in small areas put intense strain on mobile networks, causing connection failures and reduced quality of service. Better network resource management offers a low-cost solution.

The need for greater network capacity has been a constant concern of mobile operators as mobile phone traffic has increased in recent years and new data services have become available. There are two main ways to meet the demand: invest in costly new infrastructure or improve the way you manage the resources you have.

“Better resource management allows operators to provide more services of better quality to more users on existing infrastructure without having to spend money on new infrastructure,” explains Ferran Casadevall, a researcher at the Technical University of Catalonia.

And, because it is a more dynamic solution, resource management technologies allow operators to optimise traffic capacity as and when it is needed, whether in shopping malls during the busy holiday season or at a sports’ stadium during a football match. However, for resource management systems to be truly effective, they must be able to manage a variety of different radio access technologies, from GSM and third-generation (3G) UMTS to high-speed WLAN, simultaneously.

A team of researchers led by Casadevall have come up with a solution. In the EU-funded Aroma project, they developed Common Radio Resource Management (CRRM) algorithms that function within and between mobile and wireless systems.

“We have taken a global approach in that we focused not on one access technology alone, but rather on all that are available. Our approach manages network connections depending on where users are and what they are doing. In essence, it provides operators with a better way to balance traffic from different sources, and it does so intelligently,” Casadevall says.

“Someone making a voice call, for example, would probably only need GSM but someone watching streaming video or digital TV would want to use high-speed WLAN where it is available, such as inside a building, and then be handed over seamlessly to UMTS when they leave the coverage area,” he adds.

The CRRM concept and some of the algorithms developed by Casadevall’s team are being considered for adoption by the four big European mobile operators in the Aroma consortium – Telefónica, telecom Italia, Portugal Telecom and TeliaSonera. They have also elicited interest from other operators. Telecom Italia has one patent pending as a result of the project, while the Technical University of Catalonia has another.

More calls, more messages, more TV… more quality of service

For mobile phone users, the Aroma approach provides better quality of service because no matter what they are doing or where they are, the algorithms fine-tune the network to suit their needs. In high-traffic situations, that means more people will be able to make calls, send messages or watch television without suffering from service losses.

For operators, CRRM promises major cost savings. According to the Aroma consortium’s projections, the resource management solutions could save operators a significant amount of money per year by reducing how much they need to invest in new UMTS infrastructure in order to continue to add clients. That is especially important at a time when the rollout of new services, such as digital mobile television, will put increased strain on existing networks. In addition, no big leap in communications technology is expected in the coming years.

“The first generation of mobile communications was the analogue networks introduced in the 1980s. Those then underwent a major switch in Europe and much of the world to GSM, the second generation, and then a big leap to UMTS, the third generation. Now we are witnessing a more gradual evolution toward integrating new services and systems into existing technology and improving the management of them globally in order to free up bandwidth. In the future, new services will appear that you couldn’t even imagine today,” Casadevall predicts.

In his view, the introduction of new services and the need to optimise network capacity to handle them is part of a virtuous circle that will continue to spur growth in the mobile communications industry.

“People demand more services, which requires more bandwidth, which requires better resource management, which in turn improves services and allows new ones to be created,” he says. “Until now, voice has been the major driving force behind the sector, but a big switch is starting to occur toward data – and that creates new demands.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89418

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>