Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crowd-beating mobile network management

10.01.2008
During the festive season, high streets and shopping malls across Europe are packed with shoppers armed with mobile phones. But the big crowds in small areas put intense strain on mobile networks, causing connection failures and reduced quality of service. Better network resource management offers a low-cost solution.

The need for greater network capacity has been a constant concern of mobile operators as mobile phone traffic has increased in recent years and new data services have become available. There are two main ways to meet the demand: invest in costly new infrastructure or improve the way you manage the resources you have.

“Better resource management allows operators to provide more services of better quality to more users on existing infrastructure without having to spend money on new infrastructure,” explains Ferran Casadevall, a researcher at the Technical University of Catalonia.

And, because it is a more dynamic solution, resource management technologies allow operators to optimise traffic capacity as and when it is needed, whether in shopping malls during the busy holiday season or at a sports’ stadium during a football match. However, for resource management systems to be truly effective, they must be able to manage a variety of different radio access technologies, from GSM and third-generation (3G) UMTS to high-speed WLAN, simultaneously.

A team of researchers led by Casadevall have come up with a solution. In the EU-funded Aroma project, they developed Common Radio Resource Management (CRRM) algorithms that function within and between mobile and wireless systems.

“We have taken a global approach in that we focused not on one access technology alone, but rather on all that are available. Our approach manages network connections depending on where users are and what they are doing. In essence, it provides operators with a better way to balance traffic from different sources, and it does so intelligently,” Casadevall says.

“Someone making a voice call, for example, would probably only need GSM but someone watching streaming video or digital TV would want to use high-speed WLAN where it is available, such as inside a building, and then be handed over seamlessly to UMTS when they leave the coverage area,” he adds.

The CRRM concept and some of the algorithms developed by Casadevall’s team are being considered for adoption by the four big European mobile operators in the Aroma consortium – Telefónica, telecom Italia, Portugal Telecom and TeliaSonera. They have also elicited interest from other operators. Telecom Italia has one patent pending as a result of the project, while the Technical University of Catalonia has another.

More calls, more messages, more TV… more quality of service

For mobile phone users, the Aroma approach provides better quality of service because no matter what they are doing or where they are, the algorithms fine-tune the network to suit their needs. In high-traffic situations, that means more people will be able to make calls, send messages or watch television without suffering from service losses.

For operators, CRRM promises major cost savings. According to the Aroma consortium’s projections, the resource management solutions could save operators a significant amount of money per year by reducing how much they need to invest in new UMTS infrastructure in order to continue to add clients. That is especially important at a time when the rollout of new services, such as digital mobile television, will put increased strain on existing networks. In addition, no big leap in communications technology is expected in the coming years.

“The first generation of mobile communications was the analogue networks introduced in the 1980s. Those then underwent a major switch in Europe and much of the world to GSM, the second generation, and then a big leap to UMTS, the third generation. Now we are witnessing a more gradual evolution toward integrating new services and systems into existing technology and improving the management of them globally in order to free up bandwidth. In the future, new services will appear that you couldn’t even imagine today,” Casadevall predicts.

In his view, the introduction of new services and the need to optimise network capacity to handle them is part of a virtuous circle that will continue to spur growth in the mobile communications industry.

“People demand more services, which requires more bandwidth, which requires better resource management, which in turn improves services and allows new ones to be created,” he says. “Until now, voice has been the major driving force behind the sector, but a big switch is starting to occur toward data – and that creates new demands.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89418

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>