Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the limits of chip miniaturisation

09.01.2008
Over the last four decades, computer chips have found their way into virtually every electronic device in the world. During that time they have become smaller, cheaper and more powerful, but, for a team of European researchers, there is still plenty of scope to push back the limits of miniaturisation.

The first generation of CMOS (complementary metal-oxide semiconductor) chips were based on a design process with lithographic features defining regions inside the transistors of 10 micrometres or more. The chips in most products in use today have features more than a hundred times smaller – just 65 nanometres (nm) or 90nm, approximately 1,000 times less than the width of a human hair. That may be small, but in the competitive semiconductor industry, where size is of high importance, it is not small enough.

A reduction in minimum feature size means more transistors per chip, more transistors means more computing power, and more power means electronic systems – mobile phones, PCs, satellites, vehicles, etc. – will gain in functionality and performance. And, because the processed silicon wafers out of which chips are made are expensive (setting up a factory to produce them costs €3 billion) using less of them to do more means the trend toward such devices becoming cheaper can continue.

“The semiconductor industry is in the business of selling square millimetres of silicon. So, by cramming more transistors into a chip you’re delivering more capacity, more functionality and more computing power for the same price. It’s why things like mobile phones, LCD TVs and DVD players are coming down in price,” notes Gilles Thomas, the director of R&D Cooperative Programs at STMicroelectronics in Crolles, France, the world’s fifth biggest semiconductor manufacturer and Europe’s largest semiconductor supplier.

Taking the ‘O’ out of CMOS
Over the last three and a half years, STMicroelectronics has coordinated two large EU-funded projects to push back the limits of miniaturisation in the semiconductor industry. The NanoCMOS initiative, ending in June 2006, developed the technology to create a 45nm generation (or technology node) of chips.

A follow-up project, called Pullnano and coordinated by Thomas, is currently working on developing nodes as small as 32nm and even 22nm. At that diminutive size, semiconductor manufacturing is continuing to test Moore’s Law, an assumption spelled out by Intel co-founder Gordon E Moore, in 1965, predicting that the number of transistors that can be cost-effectively placed on a chip will double approximately every two years.

“The work of NanoCMOS and Pullnano has moved in that direction, although there is probably 12 or 15 more years to go before we hit a practical and economical limit on how small the nodes can become,” Thomas explains.

At the 32nm scale, in particular, quantum mechanical effects come into play in a big way. One major problem the Pullnano researchers have solved is reducing current leakage at the logic gate by using a hafnium compound-based insulator with higher dielectric strength than traditional silicon dioxide.

“We’ve achieved a 100-fold reduction in gate leakage,” Thomas says, noting that it is the first time the oxide – the ’O’ in CMOS – has been replaced with a different material.

Semiconductor makers’ “million-dollar question”
But as nodes keep getting smaller, a point will inevitably be reached when it is simply no longer feasible to continue to reduce the minimum feature size to make space for more transistors. Thomas describes this point as the semiconductor industry’s “million-dollar question”, although he estimates that it will probably be around the 16nm or 11nm mark.

“At that point it would not be economical or practical to go smaller, even though, in theory, it would be possible,” he says.

Even so, there is still some time before that point is reached. STMicroelectronics is due to start sampling the 45nm node semiconductors that the NanoCMOS project helped develop from next year, with a view to placing electronic systems using them in consumers’ hands by 2009.

By 2011, the Switzerland-headquartered company expects to start commercialising the 32nm node semiconductors being developed in the Pullnano initiative, with a view to developing a commercially viable 22nm process a couple of years after that.

“The 45nm process has already been validated through the production of an SRAM [static random access memory] chip, which we use to benchmark the performance of each generation. We will do the same with the 32nm process,” Thomas says.

NanoCMOS, which involved 20 partners, and Pullnano, which involves 38 partners, have helped give Europe an edge in semiconductor manufacturing, suggests Thomas, although he notes that the highly competitive sector remains dominated by American and Asian giants such as Intel and Samsung. Nonetheless, there is plenty of room for future growth, even as chips become cheaper.

Consumers will be the biggest beneficiary of the continuation of this miniaturisation trend. The economies of scale created within the $260 billion (+/- €183 billion) semiconductor industry have put electronics within the reach of the masses as the cost per transistor has fallen 2,500 times over the last 25 years. This is thanks to shrinking feature sizes and to increases in transistor manufacturing capacity by a factor of some 30,000.

“Just look at computer memory, in the early 1970s one megabyte cost more than a house, now it costs less than a piece of candy,” Thomas notes.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89282

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>