Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the limits of chip miniaturisation

09.01.2008
Over the last four decades, computer chips have found their way into virtually every electronic device in the world. During that time they have become smaller, cheaper and more powerful, but, for a team of European researchers, there is still plenty of scope to push back the limits of miniaturisation.

The first generation of CMOS (complementary metal-oxide semiconductor) chips were based on a design process with lithographic features defining regions inside the transistors of 10 micrometres or more. The chips in most products in use today have features more than a hundred times smaller – just 65 nanometres (nm) or 90nm, approximately 1,000 times less than the width of a human hair. That may be small, but in the competitive semiconductor industry, where size is of high importance, it is not small enough.

A reduction in minimum feature size means more transistors per chip, more transistors means more computing power, and more power means electronic systems – mobile phones, PCs, satellites, vehicles, etc. – will gain in functionality and performance. And, because the processed silicon wafers out of which chips are made are expensive (setting up a factory to produce them costs €3 billion) using less of them to do more means the trend toward such devices becoming cheaper can continue.

“The semiconductor industry is in the business of selling square millimetres of silicon. So, by cramming more transistors into a chip you’re delivering more capacity, more functionality and more computing power for the same price. It’s why things like mobile phones, LCD TVs and DVD players are coming down in price,” notes Gilles Thomas, the director of R&D Cooperative Programs at STMicroelectronics in Crolles, France, the world’s fifth biggest semiconductor manufacturer and Europe’s largest semiconductor supplier.

Taking the ‘O’ out of CMOS
Over the last three and a half years, STMicroelectronics has coordinated two large EU-funded projects to push back the limits of miniaturisation in the semiconductor industry. The NanoCMOS initiative, ending in June 2006, developed the technology to create a 45nm generation (or technology node) of chips.

A follow-up project, called Pullnano and coordinated by Thomas, is currently working on developing nodes as small as 32nm and even 22nm. At that diminutive size, semiconductor manufacturing is continuing to test Moore’s Law, an assumption spelled out by Intel co-founder Gordon E Moore, in 1965, predicting that the number of transistors that can be cost-effectively placed on a chip will double approximately every two years.

“The work of NanoCMOS and Pullnano has moved in that direction, although there is probably 12 or 15 more years to go before we hit a practical and economical limit on how small the nodes can become,” Thomas explains.

At the 32nm scale, in particular, quantum mechanical effects come into play in a big way. One major problem the Pullnano researchers have solved is reducing current leakage at the logic gate by using a hafnium compound-based insulator with higher dielectric strength than traditional silicon dioxide.

“We’ve achieved a 100-fold reduction in gate leakage,” Thomas says, noting that it is the first time the oxide – the ’O’ in CMOS – has been replaced with a different material.

Semiconductor makers’ “million-dollar question”
But as nodes keep getting smaller, a point will inevitably be reached when it is simply no longer feasible to continue to reduce the minimum feature size to make space for more transistors. Thomas describes this point as the semiconductor industry’s “million-dollar question”, although he estimates that it will probably be around the 16nm or 11nm mark.

“At that point it would not be economical or practical to go smaller, even though, in theory, it would be possible,” he says.

Even so, there is still some time before that point is reached. STMicroelectronics is due to start sampling the 45nm node semiconductors that the NanoCMOS project helped develop from next year, with a view to placing electronic systems using them in consumers’ hands by 2009.

By 2011, the Switzerland-headquartered company expects to start commercialising the 32nm node semiconductors being developed in the Pullnano initiative, with a view to developing a commercially viable 22nm process a couple of years after that.

“The 45nm process has already been validated through the production of an SRAM [static random access memory] chip, which we use to benchmark the performance of each generation. We will do the same with the 32nm process,” Thomas says.

NanoCMOS, which involved 20 partners, and Pullnano, which involves 38 partners, have helped give Europe an edge in semiconductor manufacturing, suggests Thomas, although he notes that the highly competitive sector remains dominated by American and Asian giants such as Intel and Samsung. Nonetheless, there is plenty of room for future growth, even as chips become cheaper.

Consumers will be the biggest beneficiary of the continuation of this miniaturisation trend. The economies of scale created within the $260 billion (+/- €183 billion) semiconductor industry have put electronics within the reach of the masses as the cost per transistor has fallen 2,500 times over the last 25 years. This is thanks to shrinking feature sizes and to increases in transistor manufacturing capacity by a factor of some 30,000.

“Just look at computer memory, in the early 1970s one megabyte cost more than a house, now it costs less than a piece of candy,” Thomas notes.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89282

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>