Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient care: a page out of the e-assistant book

08.01.2008
European and Turkish doctors and technicians are perfecting a medical support system that can track patients’ real-time vital signs, link those to patient medical history, and, crucially, provide the latest clinical guidelines for patient care. Better yet, it can alert doctors when necessary. It’s not a digital doctor, but it’s getting there.

It is called Saphire, and it is an Intelligent Clinical Decision Support System (ICDSS) offering a range of services that combines scattered information stored in different systems into a new, more powerful application.

It will mean better, and cheaper, medical care. Finally.

Information technology has long promised to improve healthcare by assigning a scarce resource, a doctor’s time, wherever and whenever it is needed, but so far it has struggled to deliver on the promises.

The problem is that patients’ records, for example, are often stored on different platforms in various formats. Saphire cracks that problem by converting diverse formats into one that can be combined with other data. In the process, the team initially used ontology mapping to mediate semantically between one set of defined pieces of information and another set.

“Later on, we noticed that XSLT mapping can also perform some of the conversions adequately in much shorter time,” remarks Mehmet Olduz, a researcher with Saphire. “So, the team included XSLT mapping ability as well as ontology mapping which has given a considerable performance improvement to the system.”

XSLT converts one type of XML, the language of Web 2.0, to another type. The upshot is more effective translation with less work. Using techniques like these can translate medical records into a standard format and integrate them with patients’ real-time vital signs -a huge advance.

The team also initially used web services to access patient Electronic Healthcare Records (EHR). But they finally switched to a standard called Healthcare Cross-Enterprise Clinical Document Sharing (IHE-XDS) instead. It is a widely accepted practice by the industry, and also adopted by many countries for implementing their national healthcare networks.

Clinical decisions, stat

But that is not the really clever bit. “I think what makes Saphire unique is the semi-automatic deployment of clinical guidelines to healthcare institutes,” says Olduz. Clinical guidelines are the distilled wisdom of medical research and doctors’ experience and they identify the most reasonable response in specific circumstances.

For example, percutaneous coronary infusion (PCI) –inserting a balloon into a blocked artery to re-establish blood flow– is the recommended procedure for STEMI, a particular kind of heart attack, according to the Australian medical association.

If a patient presents late to a medical centre without PCI, the guidelines state it is better to transfer a patient to a hospital with PCI if it takes less than two hours to get there. If it takes more, it is better to treat immediately using whatever method available at hand, typically drug-stimulated fibrinolysis, which thins blood clots.

That is just one simple example. There are literally thousands of guidelines for the multitude of emergency conditions a doctor can face. And they change, all the time, as new information refines established therapies. It is essential information for effective treatment, but right now it relies on a doctor’s knowledge and experience.

But with Saphire, that knowledge is updated regularly, matched against a patient’s real symptoms and vital signs, and at the doctors’ fingertips via sms, pager, email, web browser or PDA whenever doctors’ need it or an emergency occurs. It is unique to Saphire.

“There had been efforts to computerise the guidelines and automatically execute them, for example Guideline Interchange Format (GLIF),” explains Olduz. But these attempts mainly focused on sharing of guidelines and had to be manually deployed to the computer or device. The European Funded Saphire solves this, suggests Olduz.

The team have finished the technical implementation and now they will go forward with the pilots, one in the hospital and one at home. Doctors are excited that it may mean certain patients can be transferred to regular wards sooner, freeing beds in critical care units.

The system will also provide an enormous boost to the training of young doctors and it should minimise the risk of medical errors. And it will mean a far better level of at home care, too.

Saphire also presents a commercial opportunity. The team will seek to commercialise the platform for use in hospitals throughout the world.

But Saphire, which recently attended the e-Challenges 2007 event in The Netherlands, will also help SMEs seeking to enter the medical sensor market. “It aims to facilitate SME participation [in] healthcare network infrastructure development efforts by providing the necessary interoperability platform for wireless medical sensor data and medical information systems,” notes Olduz.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89306

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>