Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Project MERASA: New processors to make cars more economical and planes safer

04.01.2008
Computer scientists from Augsburg coordinate 2.1 million euro EU project with research and industry partners from Spain, France, England, the Czech Republic and the Netherlands.

The chief aim of the EU project entitled "Multi-Core Execution of Hard Real-Time Applications Supporting Analysability" (MERASA) is to make cars and planes more energy-efficient, economical, and safe. On 3 December 2007 a contract was signed at the University of Augsburg between the European Community and the Augsburg computer scientist Professor Dr. Theo Ungerer (Chair of Systems and Networking), who is coordinating the three-year project. It is being financed by a 2.1 million euro subsidy from the EU.

How can cars, planes and machines in general be made safer, more economical and more energy-efficient? For instance, ABS systems in cars could become even safer if the performance of the electronic control unit is increased. Control units with higher performance levels allow to optimize the fuel consumption of engines through improved regulation, to name just one benefit. However, all of these systems need a guarantee that the tasks can be executed within a fixed and very short time interval. Such systems require what are known as "hard real-time constraints". There are currently very few processors that can guarantee the necessary execution deadlines. Despite the high performance levels of today's PC processors, these processors are not suitable for applications in "embedded systems" such as ABS or engine regulation. Moreover, they are too expensive. In turn, the relatively simple processors that are normally installed in "embedded systems" have limited performance capability and are not able to meet the higher standards of safety and cost-effectiveness that the future will bring.

Embedded processors that satisfy hard real-time constraints

The EU project MERASA sets out to develop embedded processors that use multi-core technology to satisfy hard real-time constraints. Multi-core technology is a procedure in which several processors are built into one chip. "To this end, we at the University of Augsburg will develop new real-time-capable processor structures in collaboration with our colleagues at the Barcelona Supercomputing Center. We will implement them prototypically, and at the same time design the corresponding real-time-capable operating system software here in Augsburg," explains Ungerer.

To guarantee real-time capability, software tools that can calculate the worst-case execution time are required. These software tools are to be provided as part of the MERASA project by researchers at Paul Sabatier University in Toulouse and at Rapita Systems Ltd in the UK. Ungerer says: "Hand in hand with the hardware developers in Augsburg and Barcelona, our colleagues in France and England will develop suitable software solutions for the multi-core processors that we as a group are endeavouring to create. We are certain that, at the end of the three-year MERASA project, we will be able to present convincing prototypes of a new multi-core processor, an adequate operating system and software tools that are precisely tailored to the requirements of the program analysis of hard real-time applications."

Manufacturers and users involved from the start

In order to ensure the best possible transfer and user process, partners in industry - both processor manufacturers and users - will be involved right from the start in the development of the hardware and software solutions that the project aims to find. The company Honeywell spol. s.r.o. in Brünn (Czech Republic) will work on the operability of an autonomous control application for cars and for planes based on the MERASA developments. Likewise, the processor manufacturers Infineon (Munich/Bristol) and NXP (Eindhoven), and the application companies Airbus France, European Space Agency and Bauer Maschinen (Schrobenhausen) are integrated into the project through an Industrial Advisory Board, in order to support the hardware and software developments from the beginning and to test them in pilot projects.

"This integration of renowned companies from different European states," adds Ungerer, "also clearly demonstrates that one aim of our MERASA project is to make an important contribution to the future competitiveness of Europe in the key segments of the motor, aerospace and machine construction industries."

Contact:
Prof. Dr. Theo Ungerer
Department of Computer Science
University of Augsburg
D-86135 Augsburg
Germany
Tel: +49 (0)821-598-2351
theo.ungerer@informatik.uni-augsburg.de

Klaus P. Prem | idw
Further information:
http://www.merasa.org
http://idw-online.de/pages/de/news238922

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>