Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Project MERASA: New processors to make cars more economical and planes safer

04.01.2008
Computer scientists from Augsburg coordinate 2.1 million euro EU project with research and industry partners from Spain, France, England, the Czech Republic and the Netherlands.

The chief aim of the EU project entitled "Multi-Core Execution of Hard Real-Time Applications Supporting Analysability" (MERASA) is to make cars and planes more energy-efficient, economical, and safe. On 3 December 2007 a contract was signed at the University of Augsburg between the European Community and the Augsburg computer scientist Professor Dr. Theo Ungerer (Chair of Systems and Networking), who is coordinating the three-year project. It is being financed by a 2.1 million euro subsidy from the EU.

How can cars, planes and machines in general be made safer, more economical and more energy-efficient? For instance, ABS systems in cars could become even safer if the performance of the electronic control unit is increased. Control units with higher performance levels allow to optimize the fuel consumption of engines through improved regulation, to name just one benefit. However, all of these systems need a guarantee that the tasks can be executed within a fixed and very short time interval. Such systems require what are known as "hard real-time constraints". There are currently very few processors that can guarantee the necessary execution deadlines. Despite the high performance levels of today's PC processors, these processors are not suitable for applications in "embedded systems" such as ABS or engine regulation. Moreover, they are too expensive. In turn, the relatively simple processors that are normally installed in "embedded systems" have limited performance capability and are not able to meet the higher standards of safety and cost-effectiveness that the future will bring.

Embedded processors that satisfy hard real-time constraints

The EU project MERASA sets out to develop embedded processors that use multi-core technology to satisfy hard real-time constraints. Multi-core technology is a procedure in which several processors are built into one chip. "To this end, we at the University of Augsburg will develop new real-time-capable processor structures in collaboration with our colleagues at the Barcelona Supercomputing Center. We will implement them prototypically, and at the same time design the corresponding real-time-capable operating system software here in Augsburg," explains Ungerer.

To guarantee real-time capability, software tools that can calculate the worst-case execution time are required. These software tools are to be provided as part of the MERASA project by researchers at Paul Sabatier University in Toulouse and at Rapita Systems Ltd in the UK. Ungerer says: "Hand in hand with the hardware developers in Augsburg and Barcelona, our colleagues in France and England will develop suitable software solutions for the multi-core processors that we as a group are endeavouring to create. We are certain that, at the end of the three-year MERASA project, we will be able to present convincing prototypes of a new multi-core processor, an adequate operating system and software tools that are precisely tailored to the requirements of the program analysis of hard real-time applications."

Manufacturers and users involved from the start

In order to ensure the best possible transfer and user process, partners in industry - both processor manufacturers and users - will be involved right from the start in the development of the hardware and software solutions that the project aims to find. The company Honeywell spol. s.r.o. in Brünn (Czech Republic) will work on the operability of an autonomous control application for cars and for planes based on the MERASA developments. Likewise, the processor manufacturers Infineon (Munich/Bristol) and NXP (Eindhoven), and the application companies Airbus France, European Space Agency and Bauer Maschinen (Schrobenhausen) are integrated into the project through an Industrial Advisory Board, in order to support the hardware and software developments from the beginning and to test them in pilot projects.

"This integration of renowned companies from different European states," adds Ungerer, "also clearly demonstrates that one aim of our MERASA project is to make an important contribution to the future competitiveness of Europe in the key segments of the motor, aerospace and machine construction industries."

Contact:
Prof. Dr. Theo Ungerer
Department of Computer Science
University of Augsburg
D-86135 Augsburg
Germany
Tel: +49 (0)821-598-2351
theo.ungerer@informatik.uni-augsburg.de

Klaus P. Prem | idw
Further information:
http://www.merasa.org
http://idw-online.de/pages/de/news238922

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>