Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Project MERASA: New processors to make cars more economical and planes safer

04.01.2008
Computer scientists from Augsburg coordinate 2.1 million euro EU project with research and industry partners from Spain, France, England, the Czech Republic and the Netherlands.

The chief aim of the EU project entitled "Multi-Core Execution of Hard Real-Time Applications Supporting Analysability" (MERASA) is to make cars and planes more energy-efficient, economical, and safe. On 3 December 2007 a contract was signed at the University of Augsburg between the European Community and the Augsburg computer scientist Professor Dr. Theo Ungerer (Chair of Systems and Networking), who is coordinating the three-year project. It is being financed by a 2.1 million euro subsidy from the EU.

How can cars, planes and machines in general be made safer, more economical and more energy-efficient? For instance, ABS systems in cars could become even safer if the performance of the electronic control unit is increased. Control units with higher performance levels allow to optimize the fuel consumption of engines through improved regulation, to name just one benefit. However, all of these systems need a guarantee that the tasks can be executed within a fixed and very short time interval. Such systems require what are known as "hard real-time constraints". There are currently very few processors that can guarantee the necessary execution deadlines. Despite the high performance levels of today's PC processors, these processors are not suitable for applications in "embedded systems" such as ABS or engine regulation. Moreover, they are too expensive. In turn, the relatively simple processors that are normally installed in "embedded systems" have limited performance capability and are not able to meet the higher standards of safety and cost-effectiveness that the future will bring.

Embedded processors that satisfy hard real-time constraints

The EU project MERASA sets out to develop embedded processors that use multi-core technology to satisfy hard real-time constraints. Multi-core technology is a procedure in which several processors are built into one chip. "To this end, we at the University of Augsburg will develop new real-time-capable processor structures in collaboration with our colleagues at the Barcelona Supercomputing Center. We will implement them prototypically, and at the same time design the corresponding real-time-capable operating system software here in Augsburg," explains Ungerer.

To guarantee real-time capability, software tools that can calculate the worst-case execution time are required. These software tools are to be provided as part of the MERASA project by researchers at Paul Sabatier University in Toulouse and at Rapita Systems Ltd in the UK. Ungerer says: "Hand in hand with the hardware developers in Augsburg and Barcelona, our colleagues in France and England will develop suitable software solutions for the multi-core processors that we as a group are endeavouring to create. We are certain that, at the end of the three-year MERASA project, we will be able to present convincing prototypes of a new multi-core processor, an adequate operating system and software tools that are precisely tailored to the requirements of the program analysis of hard real-time applications."

Manufacturers and users involved from the start

In order to ensure the best possible transfer and user process, partners in industry - both processor manufacturers and users - will be involved right from the start in the development of the hardware and software solutions that the project aims to find. The company Honeywell spol. s.r.o. in Brünn (Czech Republic) will work on the operability of an autonomous control application for cars and for planes based on the MERASA developments. Likewise, the processor manufacturers Infineon (Munich/Bristol) and NXP (Eindhoven), and the application companies Airbus France, European Space Agency and Bauer Maschinen (Schrobenhausen) are integrated into the project through an Industrial Advisory Board, in order to support the hardware and software developments from the beginning and to test them in pilot projects.

"This integration of renowned companies from different European states," adds Ungerer, "also clearly demonstrates that one aim of our MERASA project is to make an important contribution to the future competitiveness of Europe in the key segments of the motor, aerospace and machine construction industries."

Contact:
Prof. Dr. Theo Ungerer
Department of Computer Science
University of Augsburg
D-86135 Augsburg
Germany
Tel: +49 (0)821-598-2351
theo.ungerer@informatik.uni-augsburg.de

Klaus P. Prem | idw
Further information:
http://www.merasa.org
http://idw-online.de/pages/de/news238922

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>