Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double antennas deliver double the signal

02.01.2008
Digital TV transmission techniques that deliver most benefit in the worst reception environments have been developed by a consortium of European researchers. The technologies promise to reduce the network infrastructure needed for mobile TV, while minimising the power demands and complexity of mobile TV receivers of the future.

In a typical broadcast transmission, radio signals bounce off objects in the environment, reaching the receiver over multiple paths. Distortion from ‘multi-path’ signals can produce fading, resulting in temporary failure of reception. Most of us have experienced this, moving a mobile phone around a room to get the strongest signal.

Modern broadband wireless technologies like wimax, DAB for audio, and DVB-T and DVB-H for video, use a modulation scheme called Orthogonal Frequency-Division Multiplexing (OFDM).

An OFDM transmission is spread across thousands of different sub-carriers, each carefully organised at slightly different frequencies within the channel. Spreading the transmission across a high number of sub-carriers increases the probability of maintaining error-free transmission.

Researchers have demonstrated that splitting the transmit power between multiple antennas can provide substantially more effective coverage than using a single antenna. Signal simulations carried out for project Pluto show a gain of up to 5 decibels could be achieved. The Physical Layer DVB Transmission Optimisation (PLUTO) project comprises a consortium of academics, equipment manufacturers, propagation experts and broadcasters from Finland, France, Germany and the UK, co-funded by the European Commission.

Best in worst environments
The transmission-splitting technique under development by PLUTO, known as ‘transmit diversity’, benefits the worst environments most. Reception can be spectacularly improved indoors, or whilst walking or driving in cities. Fewer transmitters and less power are required to achieve economical coverage.

“This technique does not require revision of any WiMAX, DVB or DAB standards,” says Maurice Bard of UK company Broadreach Systems, the technical leader of PLUTO. “The great advantage is that it can be exploited by existing in-service receivers without modification. All you need is an additional box that can split the signal.”

“The transmit antennas need to be spatially separated by between 10 and 20 wavelengths and a delay applied to one antenna to achieve effective de-correlation. The amount of separation and delay depends on the type of environment to be covered,” says Bard.

Coverage can be further improved if there are two or more antennas at the reception end, he explains: “For receive diversity, you need to separate the receive antennas by at least half a wavelength which is approximately 25 centimetres at UHF frequencies. If this can be achieved, then transmit and receive diversity can work together to deliver even greater benefits. The benefits of receive diversity, however, can only be exploited in terms of network design if all receivers in the network have diversity implemented.”

Filling in black holes
Even with the reception improvements promised by transmit diversity, there will be reception black spots, particularly indoors, where on-channel repeaters will be needed. An on-channel repeater receives a signal from a distant transmitter and re-transmits it at the same frequency. The repeaters are prone to instability caused by the feedback of echoes from the transmitter to the receiver. Here, the academics at Brunel University, led by PLUTO project coordinator Professor John Cosmas, have developed an innovative method to remove these echoes.

A pseudo-random sequence is buried deep in the re-transmitted DVB-H signal,” explains Cosmas. “The sequence acts as a signature, allowing the repeater to differentiate the unwanted echoes from the wanted original signal and remove them from the re-transmission.”

“The method can work for repeaters of any OFDM based network.”

Broadreach Systems has provided equipment to process signals at the transmitter and monitoring stations that intercept and measure transmitted DVB signals. The monitor stations are networked to a control centre, developed by Brunel, enabling the effects of diversity to be evaluated in real time.”

There are still some hurdles to be overcome before PLUTO’s transmit diversity solution is suitable for all types of broadcast networks. Transmit diversity actually results in a degradation in reception where the receiver is in clear line-of-sight with the transmitter and the signals from each antenna are received at exactly the same power level.

The line-of-sight reception loss may not prove to be a problem for many networks. In a mobile TV network, all receivers will be in a non- or near- line-of-sight situation, very few will have rooftop antennas. But ‘good enough’ is not a position that the PLUTO consortium is prepared to stop at if they are to change traditional thinking.

“We need to show that the performance we saw in the lab can be achieved in all real situations, rain, snow, cities …” says Cosmas.

“And, we have to convince the broadcasters who designed traditional analogue networks, where multi-paths had to be avoided, that multi-paths are good.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89327

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>