Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Utra-fast fibre lasers, dopey photons… what’s next?

21.12.2007
When lasers were developed in the 1960s, they were a solution looking for a problem to solve. Since then, they have become an essential tool in industries as diverse as nanotechnology and biomedicine. A new generation of ultra-fast fibre lasers being developed in Europe is creating even more uses for the beams of high-intensity light, while lowering production and maintenance costs and increasing efficiency.

To date, many commercial ultra-fast lasers – the kind that emit light in short pulses for laser machining or spectroscopy – have been based on solid-state technology using bulk optical components. However, they have several drawbacks, not least their large size and high production and maintenance costs – problems that can be solved by using optical fibre, rather than air, to carry the light.

“Fibre lasers could replace solid-state lasers for most uses, as well as open the door to new applications,” explains Mircea Guina, a researcher at the Tampere University of Technology in Finland.

Guina, the manager of the EU-funded Uranus project, foresees ultra-fast fibre lasers playing a key role in machining even smaller nanotechnology systems and in demonstrating practical new applications, such as optical coherence tomography, which is a 3D digital imaging technique used in medicine, among many other applications. “There are literally hundreds of uses,” he says.

The Uranus project proved fundamental in advancing the technology in Europe, allowing partner companies, such as laser manufacturers Fianium and Corelase, to take a leading role in the sector, and strengthening the position of Stratophase and NKT as suppliers of nonlinear crystals and photonic crystal fibres, respectively.

A giant leap in four years
“The technology and the sector today are incomparable to what they were like four years ago,” Guina notes.

Broadly, the Uranus researchers’ two main goals were to develop ultra-fast laser systems operating at different wavelengths, and to develop and test broadband fibre sources. They achieved both goals, and even surpassed their own expectations.

“Our research broke new ground – the number of research papers we published is proof of that,” Guina says. For the more technical readers, Uranus’ major achievements include the first-ever demonstration of a so-called ‘mode-locked’ laser which uses a special fibre, ytterbium-doped photonic bandgap (Yb-PBG), as both a medium and method of compensating beam dispersion. This discovery contributed to the development of the first ‘supercontinuum fibre laser’ being sold as a ready-to-go system by Fianium.

“The supercontinuum source can generate pulses at all wavelengths,” explains Oleg Okhotnikov, the coordinator of the Uranus project. “For example, in the case of medical imaging you can select the wavelength you need from the broadband spectrum to detect a specific type of chromophore attached to a cancer cell.”

Such new applications are not the only benefit of ultra-fast fibre lasers. Compared to solid-state lasers, fibre systems are more efficient, smaller and cheaper to produce.

“Fibre is more efficient than air at getting the light to its target so it needs less power to achieve the same results as solid-state systems. It is also more stable and robust,” Okhotnikov says.

Three times cheaper
Fibre systems are also considerably cheaper. Though many of the uses for them are new, fibre laser systems have been around for some time. Much of the technology involved was first developed during the 1990s when optical fibre started to be used for communications. Not only does that mean that fibre systems are well tried and tested, it also means that the components – such as the diode pumps that power the laser pulses – are relatively cheap.

“Production costs for a fibre laser are considerably less than for a solid-state system. A fibre 20-watt system operating at less than 15 picoseconds [one picosecond is one trillionth of a second] costs around €50,000 compared to the €150,000 price of a solid-state system,” Okhotnikov says.

It is therefore not surprising that increasing numbers of industries requiring lasers are switching to fibre – a boon for the project partners. In the last four years, UK-based Fianium has doubled turnover each year and quadrupled its number of full-time staff, while opening sales offices in Asia and the United States. Meanwhile, Corelase, another Uranus partner and developer of the X-lase high-powered fibre laser, was acquired by European application developer Rofin-Sinar in early 2007, due in part to the success of its work in the project.

Since the end of Uranus, the team have presented proposals for new projects in order to continue their research.

“We have come a long way in recent years, but there are still many more areas to explore,” Guina says.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89400

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>