Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sounding out the future of sound and music computing (SMC)

18.12.2007
A European consortium has drafted a roadmap to help a special branch of science – or is it arts? – reach its true potential. That field is sound and music computing (SMC) which provides the core technologies for the ongoing revolution in the electronic music industry.

It draws inspiration from hard sciences like physics and engineering, social sciences like psychology and musicology, and the creative arts. Digital musical instruments, CDs, MP3s and other innovative ICTs owe a great debt to SMC.

Forget notions that sound and music computing is just nerds tweaking knobs in soundproof rooms. This fast-moving, multi-billion euro branch of the ‘creative sciences’ looks set to be a major source of growth in Europe. That is if Europe follows the new roadmap published by the S2S² project.

SMC research is behind the music industry as we know it today, says Nicola Bernardini who coordinated the two-year IST-funded project S2S² which has charted the way forward for Europe to secure leadership in this field. Commercial music today is largely produced using computing and technology as a “surrogate” for the real thing, the composer told ICT Results, because using real instruments, learning to play them – or paying someone else to play them – can be expensive and time-consuming.

But this is a rather narrow view of the sector, says Bernardini. “With our roadmap, we wanted to show what SMC can be (and has already been) in research terms.” Music is growing in importance every day, especially in youth culture and for well-being, “so it is vital we tied this all together – it’s not only an economic lever but good for social cohesion,” he stresses.

The roadmap identifies, characterises and proposes strategies for tackling the key research challenges facing this diverse field in the next ten to 15 years, overcoming the present fragmentation of effort and stamping out a common research agenda for future European output.

A map, not a compass
The roadmap applies to the whole SMC community, including academic and industry researchers, educators, and policy-makers. It spells out five key challenges to maximising European added value in this field:

Design better sound objects and environments (improving the sounds produced by objects present in our environment to enhance their “emotional character” and our quality of life)

Understand, model and improve human interaction with sound and music
Train multidisciplinary researchers in a multicultural society
Improve knowledge transfer
Address social concerns
Using three scenarios, the roadmap paints a picture of how SMC research today will impact European society and economies tomorrow, and help bridge the so-called “semantic gap” between abstraction and applicable human knowledge – the notion of ‘sound to sense, sense to sound’ (S2S²).

The scenarios show, transversally, how our environment will change through advances in SMC technology, such as sonic environments, interactive music devices and expert music companions, notes Bernardini. “Of course, many other scenarios could be written out of the roadmap – and some perhaps less fun but more socially and culturally oriented. The scenario-writing exercise will be kept up with the maintenance of the roadmap and many other scenarios will be added in the future.”

Several EU-funded projects are deeply involved in this paradigm, says Xavier Serra of Spain’s Universitat Pompeu Fabra, an S2S² partner. These include EmCAP, CUIDADO, SALERO and HARMOS. He predicts that the EU’s new Seventh Framework Programme for research will “push the current limits” in such fields as computational neuroscience, music cognition, reasoning rules (ontology), artificial intelligence and more.

Upbeat forecasts
“The roadmap is a little on the heavy side, but it is only a starting point,” Bernardini admits during the official launch workshop in Brussels, 16 April 2007. It will need to be refined and maintained over the coming years to help stakeholders plot their own (strategic) path in the sector, he suggests.

“What’s more, the growth of the sector will happen through the convergence of SMC training in Europe, the consolidation of SMC as a fast-emerging research community and a greater attention to the contribution of new Member States in this field.” Three parallel actions are currently planned to tackle these issues. A series of SMC Summer Schools (next edition in Stockholm in July 2007) is another important vehicle for keeping the roadmap alive, he tells ICT Results.

Walter Van de Velde of the European Commission’s Future and Emerging Technologies (FET) programme is more upbeat about Sound to sense, sense to sound’s achievements in two short years. S2S² is a prime example of what FET looks for in a project, he suggests, nurturing and promoting collaborative, multidisciplinary research in an ever-promising field that brings science into everyday life.

“It's not every day a seminal document is delivered to help pave the way for emerging technology and then, later in the day, you get to see and hear a demonstration of a completely novel musical instrument – the Universitat Pompeu Fabra’s 'ReacTable' – effectively applying this technology,” concludes Van de Velde.

Source: S2S², with Xavier Serra of Spain’s Universitat Pompeu Fabra

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89044

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>