Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colour Sudoku Puzzle Demonstrates New Vision for Computing

18.12.2007
Researchers at the University of Warwick’s Department of Computer Science have developed a colour based Sudoku Puzzle that will help Sudoku players solve traditional Sudoku puzzles but also helps demonstrate the potential benefits of a radical new vision for computing.

The colour Sudoku adds another dimension to solving the puzzle by assigning a colour to each digit. Squares containing a digit are coloured according to the digit's colour. Empty squares are coloured according to which digits are possible for that square taking account of all current entries in the square's row, column and region. The empty square's colour is the combination of the colours assigned to each possible digit. This gives players major clues as darker coloured empty squares imply fewer number possibilities.

More usefully an empty square that has the same colour as a completed square must contain the same digit. If a black square is encountered then a mistake has been made. Players also can gain additional clues by changing the colour assigned to the each digit and watching the unfolding changes in the pattern of colours.

Sudoku players can test this for themselves at: www.warwick.ac.uk/go/sudoku.
(NB page requires Flash 9)
However the colour Sudoku is more than just a game to the University of Warwick Computer Scientists. For doctoral researcher Antony Harfield it is a way of exploring how logic and perception interact using a radical approach to computing called Empirical Modelling. The method can be applied to other creative problems and he is exploring how this experimental modelling technique can be used in educational technology and learning.

The interplay between logic and perception, as it relates to interactions between computers and humans is viewed as key to the building of better software. It is of particular relevance for artificial intelligence, computer graphics, and educational technology. The interaction between the shifting colour squares and the logical deductions of the Sudoku puzzle solver is a good illustration of the unusual quality of this "Empirical Modelling" approach.

Previously the researchers have been able to use their principles to analyse a railway accident in the Clayton Tunnel near Brighton when the telegraph was introduced in 1861. Reports at the time sought to blame various railway personnel but by applying Empirical Modelling the researchers have created an environment in which experimenters can replay the roles of the drivers, signalmen and other personnel involved. This has shown that there were systemic problems arising from the introduction of the new technology.

Dr Steve Russ of the Empirical Modelling group at the University of Warwick said:

"Traditional computer programs are best-suited for tasks that are so well-understood they can, without much loss, be expressed in a closed, mechanical form in which all interactions or changes are ‘pre-planned’. Even in something so simple as a Sudoku puzzle humans use a mixture of perception, expectation, experience and logic that is just incompatible with the way a computer program would typically solve the puzzle. For safety-critical systems (such as railway management) it is literally a matter of life and death that we learn to use computers in ways that integrate smoothly with human perception, communication and action. This is our goal with Empirical Modelling."

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk/go/sudoku

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>