Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe's DEISA and GridAustralia demonstrating interoperation with distributed supercomputing for HIV drug simulations

14.12.2007
DEISA, the Distributed European Infrastructure for Supercomputing Applications, and GridAustralia-APAC, joined by Monash University, have demonstrated interoperation of their HPC infrastructures with distributed simulations in both continents on the effectiveness of drugs on mutants of the Human Immunodeficiency Virus HIV.

The AIDS disease effects over 40 million people worldwide. Certain drugs have the ability to reduce patient viral loads and improve patient health by binding to and inhibiting critical viral enzymes. Unfortunately, the HIV virus causing AIDS has the ability to mutate and become resistant to these drugs. That sometimes happens in a very short period of time, thus requiring the patients to change their drug regime. As new mutations arise, it is important to pick the right anti-viral drug to best treat the patient and to not encourage the development of further drug resistance.

According to Michael Kuiper from VPAC, simulations have been designed to gather drug binding interaction energies of anti-HIV drugs bound to the active site of HIV protease, including drug-resistant versions of the protein. Though a metho¬dology with still ongoing development, it is hoped that this technique can give an accurate assessment of the likely effectiveness of each antiviral drug with respect to any given HIV mutant strain.

Given this information, patients who develop drug resistance can be given the next best effective drug for their HIV strain while reducing the danger of further resistance enhancements. In order to assess the drug binding interactions, each drug and respective HIV mutant enzyme is run as a short molecular dynamics simulation to try and get an averaged energy of interaction between the drug and the HIV protease strain. The huge number of calculations required is well suited for distributed processing, and time-to-solution can be significantly reduced by employing at the same time several supercomputers in a suitable HPC grid. Given a certain level of interoperability, the compute tasks can even be spread over different grids.

This effort has been successfully undertaken by DEISA and GridAustralia-APAC, joined by Monash University, during SC07 in Reno, although both infrastructures use different, incompatible underlying main middleware platforms.

DEISA is based on UNICORE 5 as far as job submission is concerned, while APAC makes use of the Globus Tool Kit. Following different approaches in job management, Globus and UNICORE are not interoperable in their currently established versions. In addition to DEISA’s option of data management via a continental global file system, however, both infrastructures support data transfer via GridFTP, usable both in Globus and in UNICORE.

Input data sets were provided in Australia by the Australian Research Group on an APAC storage server. Series of workflow jobs were submitted as shell scripts at the client site both to DEISA and to APAC through infrastructure specific interfaces, using DESHL for DEISA (a UNICORE command line tool), and Globus WS-Gram client for APAC. The parts of the input data required by each job were automatically moved to the respective DEISA or APAC execution sites in Europe or Australia via GridFTP.

A number of simulations were run with the drug Amprenavir (Apv) acting on various HIV strains. The trajectory data was post-processed to measure the energy of interaction between the drug and each HIV strain. The simulation results were later automatically uploaded on that APAC storage server for post-pro-cessing and visualization by the researchers.

By this transparent linking of compute resources in Australia and in Europe, and by offering reliable, automated bidirectional data transfer between both infrastructures, this project-oriented interoperation of DEISA and APAC could successfully be demonstrated for the first time.

Saara Vaerttoe | alfa
Further information:
http://www.deisa.org/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>