Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe's DEISA and GridAustralia demonstrating interoperation with distributed supercomputing for HIV drug simulations

14.12.2007
DEISA, the Distributed European Infrastructure for Supercomputing Applications, and GridAustralia-APAC, joined by Monash University, have demonstrated interoperation of their HPC infrastructures with distributed simulations in both continents on the effectiveness of drugs on mutants of the Human Immunodeficiency Virus HIV.

The AIDS disease effects over 40 million people worldwide. Certain drugs have the ability to reduce patient viral loads and improve patient health by binding to and inhibiting critical viral enzymes. Unfortunately, the HIV virus causing AIDS has the ability to mutate and become resistant to these drugs. That sometimes happens in a very short period of time, thus requiring the patients to change their drug regime. As new mutations arise, it is important to pick the right anti-viral drug to best treat the patient and to not encourage the development of further drug resistance.

According to Michael Kuiper from VPAC, simulations have been designed to gather drug binding interaction energies of anti-HIV drugs bound to the active site of HIV protease, including drug-resistant versions of the protein. Though a metho¬dology with still ongoing development, it is hoped that this technique can give an accurate assessment of the likely effectiveness of each antiviral drug with respect to any given HIV mutant strain.

Given this information, patients who develop drug resistance can be given the next best effective drug for their HIV strain while reducing the danger of further resistance enhancements. In order to assess the drug binding interactions, each drug and respective HIV mutant enzyme is run as a short molecular dynamics simulation to try and get an averaged energy of interaction between the drug and the HIV protease strain. The huge number of calculations required is well suited for distributed processing, and time-to-solution can be significantly reduced by employing at the same time several supercomputers in a suitable HPC grid. Given a certain level of interoperability, the compute tasks can even be spread over different grids.

This effort has been successfully undertaken by DEISA and GridAustralia-APAC, joined by Monash University, during SC07 in Reno, although both infrastructures use different, incompatible underlying main middleware platforms.

DEISA is based on UNICORE 5 as far as job submission is concerned, while APAC makes use of the Globus Tool Kit. Following different approaches in job management, Globus and UNICORE are not interoperable in their currently established versions. In addition to DEISA’s option of data management via a continental global file system, however, both infrastructures support data transfer via GridFTP, usable both in Globus and in UNICORE.

Input data sets were provided in Australia by the Australian Research Group on an APAC storage server. Series of workflow jobs were submitted as shell scripts at the client site both to DEISA and to APAC through infrastructure specific interfaces, using DESHL for DEISA (a UNICORE command line tool), and Globus WS-Gram client for APAC. The parts of the input data required by each job were automatically moved to the respective DEISA or APAC execution sites in Europe or Australia via GridFTP.

A number of simulations were run with the drug Amprenavir (Apv) acting on various HIV strains. The trajectory data was post-processed to measure the energy of interaction between the drug and each HIV strain. The simulation results were later automatically uploaded on that APAC storage server for post-pro-cessing and visualization by the researchers.

By this transparent linking of compute resources in Australia and in Europe, and by offering reliable, automated bidirectional data transfer between both infrastructures, this project-oriented interoperation of DEISA and APAC could successfully be demonstrated for the first time.

Saara Vaerttoe | alfa
Further information:
http://www.deisa.org/

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>