Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe's DEISA and GridAustralia demonstrating interoperation with distributed supercomputing for HIV drug simulations

14.12.2007
DEISA, the Distributed European Infrastructure for Supercomputing Applications, and GridAustralia-APAC, joined by Monash University, have demonstrated interoperation of their HPC infrastructures with distributed simulations in both continents on the effectiveness of drugs on mutants of the Human Immunodeficiency Virus HIV.

The AIDS disease effects over 40 million people worldwide. Certain drugs have the ability to reduce patient viral loads and improve patient health by binding to and inhibiting critical viral enzymes. Unfortunately, the HIV virus causing AIDS has the ability to mutate and become resistant to these drugs. That sometimes happens in a very short period of time, thus requiring the patients to change their drug regime. As new mutations arise, it is important to pick the right anti-viral drug to best treat the patient and to not encourage the development of further drug resistance.

According to Michael Kuiper from VPAC, simulations have been designed to gather drug binding interaction energies of anti-HIV drugs bound to the active site of HIV protease, including drug-resistant versions of the protein. Though a metho¬dology with still ongoing development, it is hoped that this technique can give an accurate assessment of the likely effectiveness of each antiviral drug with respect to any given HIV mutant strain.

Given this information, patients who develop drug resistance can be given the next best effective drug for their HIV strain while reducing the danger of further resistance enhancements. In order to assess the drug binding interactions, each drug and respective HIV mutant enzyme is run as a short molecular dynamics simulation to try and get an averaged energy of interaction between the drug and the HIV protease strain. The huge number of calculations required is well suited for distributed processing, and time-to-solution can be significantly reduced by employing at the same time several supercomputers in a suitable HPC grid. Given a certain level of interoperability, the compute tasks can even be spread over different grids.

This effort has been successfully undertaken by DEISA and GridAustralia-APAC, joined by Monash University, during SC07 in Reno, although both infrastructures use different, incompatible underlying main middleware platforms.

DEISA is based on UNICORE 5 as far as job submission is concerned, while APAC makes use of the Globus Tool Kit. Following different approaches in job management, Globus and UNICORE are not interoperable in their currently established versions. In addition to DEISA’s option of data management via a continental global file system, however, both infrastructures support data transfer via GridFTP, usable both in Globus and in UNICORE.

Input data sets were provided in Australia by the Australian Research Group on an APAC storage server. Series of workflow jobs were submitted as shell scripts at the client site both to DEISA and to APAC through infrastructure specific interfaces, using DESHL for DEISA (a UNICORE command line tool), and Globus WS-Gram client for APAC. The parts of the input data required by each job were automatically moved to the respective DEISA or APAC execution sites in Europe or Australia via GridFTP.

A number of simulations were run with the drug Amprenavir (Apv) acting on various HIV strains. The trajectory data was post-processed to measure the energy of interaction between the drug and each HIV strain. The simulation results were later automatically uploaded on that APAC storage server for post-pro-cessing and visualization by the researchers.

By this transparent linking of compute resources in Australia and in Europe, and by offering reliable, automated bidirectional data transfer between both infrastructures, this project-oriented interoperation of DEISA and APAC could successfully be demonstrated for the first time.

Saara Vaerttoe | alfa
Further information:
http://www.deisa.org/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>