Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reality gets hyperlinked

European researchers can now attach hyperlinks to pictures you take using your mobile phone. It offers the prospect of new ways to discover, engage and navigate your surroundings.

You wake up in a strange city with no recollection of how you got there and no information about where you are. Demonstrating nerves of steel, you calmly pick up your mobile phone and take a picture of the streetscape.

Quickly, the picture comes alive with hyperlinks, offering the names of the buildings, monuments and streetscape features that appear in the photograph. The hyperlinks lead to information about the history, services and context of all the features in the photograph. You have just hyperlinked your reality.

That scenario might be a little far-fetched, but the technology exists and is no figment of some fevered imagination. This is not a gee-whiz gadget invented by Q for the next James Bond movie; this is a working technology just developed by European researchers. It could be coming to a phone near you, and soon.

This, as the marketing types say, is a game changer. It develops a completely new interface paradigm that meshes web-technology with the real world. It is big and fresh like Apple’s game-changing multi-touch interface for the iPhone. But it goes much further and has implications that are much more profound.

The MOBVIS platform completely rewrites the rules for navigation, exploration and interaction with your physical environment. It identifies the buildings from a photograph you take in an urban environment and then places icons on points of interest.

Technology that pays attention

Then you simply click on the icon, using a cursor or, more frequently, a touch-screen phone, and the MOBVIS system will provide information on the history, art, architecture or even the menu, if it is a restaurant, of the building in question.

MOBVIS stands for mobile attentive interfaces in urban scenarios and it is the brainchild of the EU-funded MOBVIS project, a team of engineers and scientists who have successfully demonstrated the technology working in a real environment, with real users unconnected to the project.

The project’s work is all the more remarkable because image recognition technology has long been pregnant with promise, but seemed to suffer from an unending labour.

Now MOBVIS has not only developed image recognition; it has also developed compelling applications for the technology; and it has done so in the most striking and visible manner by adapting it to the world’s most ubiquitous technology: the mobile phone.

How to hyperlink reality

The system begins with geo-referenced panoramas, photographs that populate a database to establish points of reference in the streetscape. These panoramas form the basis of a city database. It can match buildings, monuments, banners and even logos that appear in the panoramas. Information relating to individual buildings or monuments is then added to the database manually.

Once annotation is complete, it is ready to take queries from mobile users. A user simply takes a picture of the streetscape, MOBVIS compares the user’s photograph to the reference panoramas and the relevant links are returned.

It is as if your picture becomes desktop background, with icons attached to each feature that you can click to navigate the history and culture of the location, or shopping opportunities in front of the user.

This is a lot trickier than it might first seem, because photos are taken in all kinds of light and weather, often at odd angles, and many buildings in Europe’s most beautiful cities, like Graz, Austria, actually look quite similar. How can the system tell them apart, and how can it be sure it is the right building?

This is where the MOBVIS demonstrates its greatest strength and most impressive advance over previous image-recognition technologies. The matching system is cloaked in impressive, intimidating technical concepts, like local invariant feature detection, epipolar geometry and planarity constraints.

Never wrong

But the genius of the system boils down to a higher-dimension, feature-matching algorithm developed by the University of Ljubljana in Slovenia, one of the partners of the project. It can very accurately detect minute but telling differences between similar objects, such as buildings or monuments, both by the appearance of the buildings themselves and their context in the streetscape.

For example, if a building with a particular geometry is beside a bridge, but not neighbouring a department store, then it must be building X. That marks the spot for the relevant information stored in the database, which is rendered as an icon.

It sounds perhaps a little improbable. How could such a system produce reliable results?

In fact, it is remarkable just how accurate this technology turned out to be in real-life tests. Users were given a five-minute instruction by an outside contractor, and then sent around to explore the city of Graz with their mobile phones.

The system reliably detected the right building 80 percent of the time, a figure that Aleš Leonardis, head of the Ljubljana team is convinced can be improved.

“But that’s not the most remarkable result of the prototype test,” stresses Leonardis. “It was remarkable that there were no false positives. Sometimes the system couldn’t identify a building, but it never put the incorrect link on a building.”

The system wasn’t always right, but it was never wrong, sometimes – about 20 percent of the time – it just did not know. This was its first live test. It is a notable achievement, and promises rapid deployment in commercial applications.

Read more about these applications in part two of a three-part feature on MOBVIS on ICT Results.

The MOBVIS project received funding from the Future Emerging Technologies FET Open strategic objective within the ICT strand of the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>