Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time Beethoven

21.11.2008
Now, you can compose and perform in the same few milliseconds. And the variations you can make on a single theme are infinite.

Imagine a concert hall and a stage, with a symphony orchestra that has performed Ludwig van Beethoven’s Ninth symphony, with the addition of electric instruments and loudspeakers.

Imagine, if you will, the composer himself (whom we’ll pretend for the occasion is not deaf), who strolls around between the orchestra members on the stage, while they start on the fourth movement.

Wielding his own instrument, a hybrid?

between a laptop and a sound generator, the composer soaks up the different tones, processes them, and sends them back in ever-changing variations.

“Ode to Joy” is sampled (digitized), producing new and unexpected phrasing - but at the same time, the basic theme is instantly recognizable. The symphony is completely altered, in ever-changing varieties, because the composer is a part of the performance of his composition.

Infinite variations

Unfortunately for old Ludwig himself, this musical vision comes 200 years too late. But we can still play with Beethoven’s works. And today's composers have been given a completely new instrument: a computer program for the processing of sound, where the actual act of composing is an integral part of the instrument itself. And where the composition takes place simultaneously with a performance, in real time - live, as it is called in music-speak.

This new invention is a tool for both improvisation and variation, a computer program and a musical instrument all rolled up into one. Call it a computer instrument. Its developer is just 36 years old; his name is Øyvind Brandtsegg, from the Norwegian University of Science and Technology (NTNU).

Brandtsegg is a composer, a musician and computer programmer. The instrument is his PhD research.

We’re talking about a new type of sound generator, a particle synthesizer. It takes a stanza – a guitar riff, a verse line, a drum solo, or any recorded sound – and splits the sound into a number of very short sound particles that can last for between 1 and 10 milliseconds.

These fragments may be infinitely reshuffled, making it possible to vary the music with no change in the fundamental theme.

“It’s easy to change a bit of music into something that can’t be recognized. It’s the opposite that is the challenge: to create variations in which the musical theme remains clear,” says Brandtsegg.

New and better energy

Brandtsegg has created a new link between composition and improvisation with his new instrument. In a way, he’s rediscovered the energy of a piece in a new and much better form. What he’s doing is something that jazz musicians have always done – they have a composition as the foundation, and then they go up on the podium and play variations on the basic theme.

But there are limits to what even Louis Armstrong can coax out of a trumpet. “This instrument allows me to expand the musical palette with new tonal variations and timbres. It is also the first time that the actual composition process can be controlled in real time”, Brandtsegg says.

Work that previously required paper, pencil (and an eraser!) and many hours, can be done in the blink of an eye, with an instrument on stage, says the composer. This allows for new ways of thinking about music composition.

A little help from my friends

Brandtsegg himself is a graduate of the jazz programme at the NTNU Department of Music.

“Here I learned to improvise in the traditional way, but I wanted more. I understood that in order to achieve my goal, I had to learn about computer programming, and understand electronics”, he says.

Along the way, he has developed ImproSculpt, software that make it possible to sample surroundings during a presentation, and to control the process using a body sensor. He also plays the Marimba Lumina, a percussion instrument that has been electronically modified so that the player can alter the sound by the way he or she strikes the instrument.

In his efforts to develop his new computerized instrument, Brandtsegg has had to seek help elsewhere at the university. Scientists at the Department of Computer and Information Science have assisted him with its software architecture, and the acoustics group at the Department of Electronics and Telecommunications has helped with the development of particle synthesizer.

By Tore Oksholen/Gemini

Øyvind Brandtsegg | alfa
Further information:
http://www.ntnu.no

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>