Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum cryptography for mobile phones

04.04.2014

Secure mobile communications underpin our society and through mobile phones, tablets and laptops we have become online consumers. The security of mobile transactions is obscure to most people but is absolutely essential if we are to stay protected from malicious online attacks, fraud and theft.

Currently available quantum cryptography technology is bulky, expensive and limited to fixed physical locations – often server rooms in a bank.

The team at Bristol has shown how it is possible to reduce these bulky and expensive resources so that a client requires only the integration of an optical chip into a mobile handset.

The scheme relies on the breakthrough protocol developed by CQP research fellow Dr Anthony Laing, and colleagues, which allows the robust exchange of quantum information through an unstable environment. The research is published in the latest issue of Physical Review Letters.

Dr Anthony Laing said: "With much attention currently focused on privacy and information security, people are looking to quantum cryptography as a solution since its security is guaranteed by the laws of physics.

Our work here shows that quantum cryptography need not be limited to large corporations, but could be made available to members of the general public. The next step is to take our scheme out of the lab and deploy it in a real communications network."

The system uses photons – single particles of light – as the information carrier and the scheme relies on the integrated quantum circuits developed at the University of Bristol.

These tiny microchips are crucial for the widespread adoption of secure quantum communications technologies and herald a new dawn for secure mobile banking, online commerce, and information exchange and could shortly lead to the production of the first 'NSA proof' mobile phone.

###

Paper:

Reference frame independent quantum key distribution server with telecom tether for on-chip client
P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, J. L. O'Brien, Physical Review Letters, 2 April 2014.

This work was supported by EPSRC, ERC, QUANTIP, PHORBITEC, and NSQI.

The Centre for Quantum Photonics is a pioneering research group in the area of Quantum Technologies, it has over 70 members and grant portfolio of greater than £20million. Having invented the integrated quantum photonic chip it has already made publically accessible and available online a real quantum computer 'quantum in the Cloud' for the purposes of educating those interested in future quantum computing technologies. http://www.bristol.ac.uk/physics/research/quantum/qcloud/

Hannah Johnson | EurekAlert!

Further reports about: Bristol Letters Quantum microchips photons physics technologies

More articles from Information Technology:

nachricht Open Source Content Decryption Module now accessible
10.09.2014 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

nachricht New Technique Checks Web Page Layouts with Computer Vision Algorithms
09.09.2014 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

NASA Releases IRIS Footage of X-class Flare

18.09.2014 | Physics and Astronomy

In mice, vaccine stops urinary tract infections linked to catheters

18.09.2014 | Health and Medicine

Scientists pioneer microscopy technique that yields fresh data on muscular dystrophy

18.09.2014 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>