Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing on the move

06.11.2017

The work by Kaufmann and coworkers appeared in the high rank international journal Physical Review Letters 119, 150503.

A future quantum computer, using “quantum bits” or qubits, might be able to solve problems which are not tractable for classical computers. Scientists are currently struggling to build devices with more than a few qubits, with the challenge arising that the qubits mutually hamper each other’s proper operation.


Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap.

photo/©: QUANTUM / Thomas Ruster

Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap. The ion qubits can be freely positioned within the trap, such that laser-driven quantum operations at high accuracy remain possible.

The team has realized the generation of an entangled state of the four qubits, where each of the qubits loses its individual identity, but the register as a whole does have a well-defined state. This has been accomplished by sequential operations on pairs of qubits, interleaved with ion movement operations. The resulting quantum state is carried by qubits which are distributed across macroscopic scales of up to several millimeters.

The approach for realizing a quantum computer based on moving ions in a micro-structured trap has originally been proposed by a team around physics nobel laureate David J. Wineland and has been coined “quantum CCD” for the analogy with the controlled movement of charges in the devices underlying modern cameras.

The work by Kaufmann and coworkers appeared in the high rank international journal Physical Review Letters 119, 150503 and marks a decisive milestone for bringing this idea for scaling up quantum computers into the realm of feasibility.

Image:
http://www.uni-mainz.de/downloads_presse/08_physik_quantum_quantencomputer.pdf
Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap.
photo/©: QUANTUM / Thomas Ruster

Publication:
Kaufmann et al.
Scalable Creation of Long-Lived Multipartite Entanglement
Physical Review Letters 119, 13 October 2017
https://doi.org/10.1103/PhysRevLett.119.150503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.150503

Contact and further information:

Prof. Dr. Ferdinand Schmidt-Kaler
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39- 26234
fax +49 6131 39-25179
e-mail: fsk@uni-mainz.de

Dr. Ulrich Poschinger
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25954
fax +49 6131 39-25179
e-mail: poschin@uni-mainz.de

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Atomic Neutron QUANTUM ions quantum bits quantum computer quantum state

More articles from Information Technology:

nachricht Graphene enables high-speed electronics on flexible materials
01.11.2017 | Chalmers University of Technology

nachricht Researchers greenlight gas detection at room temperature
27.10.2017 | Moscow Institute of Physics and Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

Im Focus: Lightwave controlled nanoscale electron acceleration sets the pace

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Of particular importance for potential applications is the ability to manipulate the acceleration process, known as a swing-by maneuver from space travel, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Quantum computing on the move

06.11.2017 | Information Technology

Fast Personalized Therapeutic Choices Thanks to the Light-Based Sorting of Biomolecules and Cells

06.11.2017 | Life Sciences

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health

06.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>