Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting pictures into words

18.09.2008
Visual images can contain a wealth of information, but they are difficult to catalogue in a searchable way. European researchers are generating and combining scraps of information to create a searchable picture.

Digital images can open our eyes to the most extraordinary detail and beauty. But there is one major drawback. The information in an image is purely visual. It tells us nothing about when or where the image was taken.

It tells us nothing about the people in the image. We do all that interpretation ourselves. That makes cataloguing and searching for particular images difficult – whether you work for an art gallery or you are updating your family album.

Scientists on a major European research project called aceMedia have taken important steps towards a solution to this problem. They are building an information layer into digital image files. Their vision is that image files will come with content information, metadata (background information for use on the internet) and an intelligence layer that automatically generates word-searchable data about the image.

An extra ‘information layer’, that adds both automatically generated and manually generated information to images, would revolutionise image searching on the internet as well as on your home computer or mobile phone. The technologies developed in the EU-funded aceMedia project have sparked interest from a range of commercial companies, looking to exploit the ideas in a host of directions.

Building a picture puzzle

The project re-used, developed and combined a series of technologies that provide greatly enriched content information about an image.

One of the technologies exploited by an aceMedia team uses software that can identify low-level visual descriptors, such as consistent areas of colour that may be sky, sea, sand or possibly snow, and information about texture, edge and shape.

Combining the low-level descriptors with sets of contextual rules held in domain ontologies (such as the fact that consistent areas of blue at the top of an image are likely to be sky, or that beach and snow are unlikely to appear in the same picture) turns data into a rich information source.

“Turning low-level descriptors into useful information is a very difficult step,” according to Yiannis Kompatsiaris, Head of the Multimedia Knowledge Laboratory at the Informatics and Telematics Institute in Thessaloniki, Greece and one of the lead researchers on aceMedia. His team was involved in structuring knowledge and adding it to the domain ontologies that classified and identified the information provided by the low-level descriptors.

Data from low-level descriptors was also combined with the results from specific detectors, such as the kinds of face detectors that are commercially available on some cameras today. All add further clues or searchable data for image users.

Another layer of information can be added by the individual user. They can add rules defining their personal preferences, profiles and policies to create a personalised filing system. ‘Inferencing’ techniques, filtering and similarity algorithms were used to make that personal filing simpler.

To enable easier searching, some of the aceMedia researchers incorporated natural language processing techniques into the mix, which mean you can use everyday language when searching for an image.

The ace in your hand

AceMedia researchers drew together their full range of technologies in an Autonomous Content Entity (ACE) Framework. The ACE Framework defines APIs to support networking, database management, scalable coding, content pre-processing, content visualisation, knowledge-assisted content analysis, as well as context analysis and modelling modules.

Using the framework, ACEs can be created that contain all of the rules, metadata and content information. They become a part of the image file.

For video, aceMedia researchers developed a scalable video codec, the aceSVC. Pical scalable video coding chain consists of three main modules – an encoder, extractor and decoder. The aceSVC enables video playing, reviewing and video analysis in the compressed domain.

As part of the project, aceMedia researchers demonstrated the benefits of automated content sharing and easier content management that ACEs could provide on a series of home network devices, including PCs, mobile phones and set-top boxes.

While the vision of the aceMedia project was to combine technologies, each delivering a piece to the overall information puzzle, they are not interdependent according to Kompatsiaris.

“The tools we developed in aceMedia are scalable to many concepts and many environments,” he confirms.

Adding time and location

“In five years time, a good number of these technologies will be in common use – combined with a number of technologies that have grown in popularity since the aceMedia project started, such as geo-tagging using GPS receivers. I think cameras in the future will know their position and be able to combine that information with content analysis to give much better results than we are capable of at the moment. For example, if the camera knows it is in a mountainous environment then it can analyse the content of the image much more efficiently.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90015

Further reports about: ACE Digital images GPS Mobile phone Visual images digital image files picture puzzle

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>