Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Psychology Theory Enables Computers To Mimic Human Creativity

03.12.2010
A dealer in antique coins gets an offer to buy a beautiful bronze coin. The coin has an emperor’s head on one side and the date “544 B.C.” stamped on the other. The dealer examines the coin, but instead of buying it, he calls the police. Why?

Solving this “insight problem” requires creativity, a skill at which humans excel (the coin is a fake – “B.C.” and Arabic numerals did not exist at the time) and computers do not. Now, a new explanation of how humans solve problems creatively – including the mathematical formulations for facilitating the incorporation of the theory in artificial intelligence programs – provides a roadmap to building systems that perform like humans at the task.

Ron Sun, Rensselaer Polytechnic Institute professor of cognitive science, said the new “Explicit-Implicit Interaction Theory,” recently introduced in an article in Psychological Review, could be used for future artificial intelligence.

“As a psychological theory, this theory pushes forward the field of research on creative problem solving and offers an explanation of the human mind and how we solve problems creatively,” Sun said. “But this model can also be used as the basis for creating future artificial intelligence programs that are good at solving problems creatively.”

The paper, titled “Incubation, Insight, and Creative Problem Solving: A Unified Theory and a Connectionist Model,” by Sun and Sèbastien Hèlie of University of California, Santa Barbara, appeared in the July edition of Psychological Review. Discussion of the theory is accompanied by mathematical specifications for the “CLARION” cognitive architecture – a computer program developed by Sun’s research group to act like a cognitive system – as well as successful computer simulations of the theory.

In the paper, Sun and Hèlie compare the performance of the CLARION model using “Explicit-Implicit Interaction” theory with results from previous human trials – including tests involving the coin question – and found results to be nearly identical in several aspects of problem solving.

In the tests involving the coin question, human subjects were given a chance to respond after being interrupted either to discuss their thought process or to work on an unrelated task. In that experiment, 35.6 percent of participants answered correctly after discussing their thinking, while 45.8 percent of participants answered correctly after working on another task.

In 5,000 runs of the CLARION program set for similar interruptions, CLARION answered correctly 35.3 percent of the time in the first instance, and 45.3 percent of the time in the second instance.

“The simulation data matches the human data very well,” said Sun.

Explicit-Implicit Interaction theory is the most recent advance on a well-regarded outline of creative problem solving known as “Stage Decomposition,” developed by Graham Wallas in his seminal 1926 book “The Art of Thought.” According to stage decomposition, humans go through four stages – preparation, incubation, insight (illumination), and verification – in solving problems creatively.

Building on Wallas’ work, several disparate theories have since been advanced to explain the specific processes used by the human mind during the stages of incubation and insight. Competing theories propose that incubation – a period away from deliberative work – is a time of recovery from fatigue of deliberative work, an opportunity for the mind to work unconsciously on the problem, a time during which the mind discards false assumptions, or a time in which solutions to similar problems are retrieved from memory, among other ideas.

Each theory can be represented mathematically in artificial intelligence models. However, most models choose between theories rather than seeking to incorporate multiple theories and therefore they are fragmentary at best.

Sun and Hèlie’s Explicit-Implicit Interaction (EII) theory integrates several of the competing theories into a larger equation.

“EII unifies a lot of fragmentary pre-existing theories,” Sun said. “These pre-existing theories only account for some aspects of creative problem solving, but not in a unified way. EII unifies those fragments and provides a more coherent, more complete theory.”

The basic principles of EII propose the coexistence of two different types of knowledge and processing: explicit and implicit. Explicit knowledge is easier to access and verbalize, can be rendered symbolically, and requires more attention to process. Implicit knowledge is relatively inaccessible, harder to verbalize, and is more vague and requires less attention to process.

In solving a problem, explicit knowledge could be the knowledge used in reasoning, deliberately thinking through different options, while implicit knowledge is the intuition that gives rise to a solution suddenly. Both types of knowledge are involved simultaneously to solve a problem and reinforce each other in the process. By including this principle in each step, Sun was able to achieve a successful system.

“This tells us how creative problem solving may emerge from the interaction of explicit and implicit cognitive processes; why both types of processes are necessary for creative problem solving, as well as in many other psychological domains and functionalities,” said Sun.

Mary Martialay | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>