Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Psychology Theory Enables Computers To Mimic Human Creativity

03.12.2010
A dealer in antique coins gets an offer to buy a beautiful bronze coin. The coin has an emperor’s head on one side and the date “544 B.C.” stamped on the other. The dealer examines the coin, but instead of buying it, he calls the police. Why?

Solving this “insight problem” requires creativity, a skill at which humans excel (the coin is a fake – “B.C.” and Arabic numerals did not exist at the time) and computers do not. Now, a new explanation of how humans solve problems creatively – including the mathematical formulations for facilitating the incorporation of the theory in artificial intelligence programs – provides a roadmap to building systems that perform like humans at the task.

Ron Sun, Rensselaer Polytechnic Institute professor of cognitive science, said the new “Explicit-Implicit Interaction Theory,” recently introduced in an article in Psychological Review, could be used for future artificial intelligence.

“As a psychological theory, this theory pushes forward the field of research on creative problem solving and offers an explanation of the human mind and how we solve problems creatively,” Sun said. “But this model can also be used as the basis for creating future artificial intelligence programs that are good at solving problems creatively.”

The paper, titled “Incubation, Insight, and Creative Problem Solving: A Unified Theory and a Connectionist Model,” by Sun and Sèbastien Hèlie of University of California, Santa Barbara, appeared in the July edition of Psychological Review. Discussion of the theory is accompanied by mathematical specifications for the “CLARION” cognitive architecture – a computer program developed by Sun’s research group to act like a cognitive system – as well as successful computer simulations of the theory.

In the paper, Sun and Hèlie compare the performance of the CLARION model using “Explicit-Implicit Interaction” theory with results from previous human trials – including tests involving the coin question – and found results to be nearly identical in several aspects of problem solving.

In the tests involving the coin question, human subjects were given a chance to respond after being interrupted either to discuss their thought process or to work on an unrelated task. In that experiment, 35.6 percent of participants answered correctly after discussing their thinking, while 45.8 percent of participants answered correctly after working on another task.

In 5,000 runs of the CLARION program set for similar interruptions, CLARION answered correctly 35.3 percent of the time in the first instance, and 45.3 percent of the time in the second instance.

“The simulation data matches the human data very well,” said Sun.

Explicit-Implicit Interaction theory is the most recent advance on a well-regarded outline of creative problem solving known as “Stage Decomposition,” developed by Graham Wallas in his seminal 1926 book “The Art of Thought.” According to stage decomposition, humans go through four stages – preparation, incubation, insight (illumination), and verification – in solving problems creatively.

Building on Wallas’ work, several disparate theories have since been advanced to explain the specific processes used by the human mind during the stages of incubation and insight. Competing theories propose that incubation – a period away from deliberative work – is a time of recovery from fatigue of deliberative work, an opportunity for the mind to work unconsciously on the problem, a time during which the mind discards false assumptions, or a time in which solutions to similar problems are retrieved from memory, among other ideas.

Each theory can be represented mathematically in artificial intelligence models. However, most models choose between theories rather than seeking to incorporate multiple theories and therefore they are fragmentary at best.

Sun and Hèlie’s Explicit-Implicit Interaction (EII) theory integrates several of the competing theories into a larger equation.

“EII unifies a lot of fragmentary pre-existing theories,” Sun said. “These pre-existing theories only account for some aspects of creative problem solving, but not in a unified way. EII unifies those fragments and provides a more coherent, more complete theory.”

The basic principles of EII propose the coexistence of two different types of knowledge and processing: explicit and implicit. Explicit knowledge is easier to access and verbalize, can be rendered symbolically, and requires more attention to process. Implicit knowledge is relatively inaccessible, harder to verbalize, and is more vague and requires less attention to process.

In solving a problem, explicit knowledge could be the knowledge used in reasoning, deliberately thinking through different options, while implicit knowledge is the intuition that gives rise to a solution suddenly. Both types of knowledge are involved simultaneously to solve a problem and reinforce each other in the process. By including this principle in each step, Sun was able to achieve a successful system.

“This tells us how creative problem solving may emerge from the interaction of explicit and implicit cognitive processes; why both types of processes are necessary for creative problem solving, as well as in many other psychological domains and functionalities,” said Sun.

Mary Martialay | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>