Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Psychology Theory Enables Computers To Mimic Human Creativity

03.12.2010
A dealer in antique coins gets an offer to buy a beautiful bronze coin. The coin has an emperor’s head on one side and the date “544 B.C.” stamped on the other. The dealer examines the coin, but instead of buying it, he calls the police. Why?

Solving this “insight problem” requires creativity, a skill at which humans excel (the coin is a fake – “B.C.” and Arabic numerals did not exist at the time) and computers do not. Now, a new explanation of how humans solve problems creatively – including the mathematical formulations for facilitating the incorporation of the theory in artificial intelligence programs – provides a roadmap to building systems that perform like humans at the task.

Ron Sun, Rensselaer Polytechnic Institute professor of cognitive science, said the new “Explicit-Implicit Interaction Theory,” recently introduced in an article in Psychological Review, could be used for future artificial intelligence.

“As a psychological theory, this theory pushes forward the field of research on creative problem solving and offers an explanation of the human mind and how we solve problems creatively,” Sun said. “But this model can also be used as the basis for creating future artificial intelligence programs that are good at solving problems creatively.”

The paper, titled “Incubation, Insight, and Creative Problem Solving: A Unified Theory and a Connectionist Model,” by Sun and Sèbastien Hèlie of University of California, Santa Barbara, appeared in the July edition of Psychological Review. Discussion of the theory is accompanied by mathematical specifications for the “CLARION” cognitive architecture – a computer program developed by Sun’s research group to act like a cognitive system – as well as successful computer simulations of the theory.

In the paper, Sun and Hèlie compare the performance of the CLARION model using “Explicit-Implicit Interaction” theory with results from previous human trials – including tests involving the coin question – and found results to be nearly identical in several aspects of problem solving.

In the tests involving the coin question, human subjects were given a chance to respond after being interrupted either to discuss their thought process or to work on an unrelated task. In that experiment, 35.6 percent of participants answered correctly after discussing their thinking, while 45.8 percent of participants answered correctly after working on another task.

In 5,000 runs of the CLARION program set for similar interruptions, CLARION answered correctly 35.3 percent of the time in the first instance, and 45.3 percent of the time in the second instance.

“The simulation data matches the human data very well,” said Sun.

Explicit-Implicit Interaction theory is the most recent advance on a well-regarded outline of creative problem solving known as “Stage Decomposition,” developed by Graham Wallas in his seminal 1926 book “The Art of Thought.” According to stage decomposition, humans go through four stages – preparation, incubation, insight (illumination), and verification – in solving problems creatively.

Building on Wallas’ work, several disparate theories have since been advanced to explain the specific processes used by the human mind during the stages of incubation and insight. Competing theories propose that incubation – a period away from deliberative work – is a time of recovery from fatigue of deliberative work, an opportunity for the mind to work unconsciously on the problem, a time during which the mind discards false assumptions, or a time in which solutions to similar problems are retrieved from memory, among other ideas.

Each theory can be represented mathematically in artificial intelligence models. However, most models choose between theories rather than seeking to incorporate multiple theories and therefore they are fragmentary at best.

Sun and Hèlie’s Explicit-Implicit Interaction (EII) theory integrates several of the competing theories into a larger equation.

“EII unifies a lot of fragmentary pre-existing theories,” Sun said. “These pre-existing theories only account for some aspects of creative problem solving, but not in a unified way. EII unifies those fragments and provides a more coherent, more complete theory.”

The basic principles of EII propose the coexistence of two different types of knowledge and processing: explicit and implicit. Explicit knowledge is easier to access and verbalize, can be rendered symbolically, and requires more attention to process. Implicit knowledge is relatively inaccessible, harder to verbalize, and is more vague and requires less attention to process.

In solving a problem, explicit knowledge could be the knowledge used in reasoning, deliberately thinking through different options, while implicit knowledge is the intuition that gives rise to a solution suddenly. Both types of knowledge are involved simultaneously to solve a problem and reinforce each other in the process. By including this principle in each step, Sun was able to achieve a successful system.

“This tells us how creative problem solving may emerge from the interaction of explicit and implicit cognitive processes; why both types of processes are necessary for creative problem solving, as well as in many other psychological domains and functionalities,” said Sun.

Mary Martialay | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>