Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protocols Will Test Effects of RFID on Medical Devices

07.10.2009
Radio frequency identification (RFID) systems are widely used for applications that include inventory management, package tracking, toll collection, passport identification and airport luggage security. More recently, these systems have found their way into medical environments to track patients, equipment assets and staff members.

However, there is currently no published standardized, repeatable methodology by which manufacturers of RFID equipment or medical devices can assess potential issues with electromagnetic interference and evaluate means to mitigate them.

To resolve these concerns, the Georgia Tech Research Institute (GTRI) recently began developing testing protocols for RFID technology in the health care setting. The test protocol development is being overseen by AIM Global, the international trade association representing automatic identification and mobility technology solution providers, and also includes MET Laboratories, a company that provides testing and certification services for medical devices.

“A comprehensive set of test protocols, which are sufficiently precise to permit repeatable results, is required to understand if there is an interaction between various types of RFID systems and active implantable medical devices, electronic medical equipment, in vitro diagnostic equipment and biologics. Only after the protocols are developed will we be able to investigate the cause of any interactions, the result of any interactions, and ways manufacturers might eliminate or mitigate interactions,” said Craig K. Harmon, president and CEO of Q.E.D. Systems and chairman of AIM Global’s RFID Experts Group. This group is overseeing the Health Care Initiative and includes representatives from 40 organizations in the United States, Europe and Asia.

GTRI researchers will test how RFID systems affect the function of implantable and wearable medical devices, such as pacemakers, implantable cardioverter defibrillators, neurostimulators, implantable infusion pumps and cardiac monitors.

“The internal components, firmware and hardware of every company’s devices are different, meaning that each device can respond differently to the same electromagnetic environment. Since there have been various preliminary tests and publications from different organizations indicating that there may or may not be issues with RFID system environments and these devices, it is important to standardize the way to test such devices,” said Ralph Herkert, director of GTRI’s Medical Device Test Center.

Herkert and Gisele Bennett, director of GTRI’s Electro-Optical Systems Laboratory, will evaluate and determine the best method for measuring whether interference takes place as a result of RFID emission in both active and passive RFID technologies covering the spectrum from low-frequency to ultra high-frequency.

The researchers will test whether radio frequency-emitting devices cause any negative effects on the medical devices, and under what conditions these effects might occur. Testing will also determine whether specific medical devices are particularly susceptible to certain radio frequency identification characteristics and if any corrective actions can be taken to mitigate such susceptibility.

Medical device testing is not new for GTRI, which established its Medical Device Test Center more than 14 years ago. The facility was created to enable manufacturers of implantable cardiac pacemakers and defibrillators to work with providers of electronic article surveillance (EAS) systems, used by retailers, libraries and other establishments to prevent theft and track inventory. The center’s original mission was to help manufacturers improve compatibility between implantable medical devices and EAS systems that radiate electromagnetic energy. In 2006, GTRI expanded its operations and facilities to test new types of security and logistical systems (SLS), including RFID.

To test the effects of RFID systems on medical devices, the researchers simulate real-world conditions by placing a medical device in a tank of saline solution that simulates the electrical characteristics of body tissue and fluid. The medical device is then exposed to different RFID technologies. Several tests are performed with the device placed in different orientations to represent how people typically interact with the emissions.

“We think the testing procedure for RFID systems will be similar to the EAS system procedure, but there are a few more challenges with the RFID systems because a person doesn’t always pass through a portal,” noted Bennett, who is also a member of AIM Global’s RFID Experts Group. “Medical devices can be affected by active tags with stronger signals or RFID systems reading passive tag signals.”

The test protocols developed by GTRI will be submitted to the U.S. Food and Drug Administration for concurrence, after which a worldwide certification program will be launched and other testing facilities will be invited to participate.

Funding to develop these test guidelines is currently being provided by GTRI, but the researchers are actively looking for external funding.

“We have more than 35 years of experience at GTRI testing medical device interference and we think that testing the effects of RFID on medical devices is an important area to pursue,” added Bennett.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: AIM EAS GTRI GTRI’s Medical Wellness RFID RFID systems implantable medical devices

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>