Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protocols Will Test Effects of RFID on Medical Devices

Radio frequency identification (RFID) systems are widely used for applications that include inventory management, package tracking, toll collection, passport identification and airport luggage security. More recently, these systems have found their way into medical environments to track patients, equipment assets and staff members.

However, there is currently no published standardized, repeatable methodology by which manufacturers of RFID equipment or medical devices can assess potential issues with electromagnetic interference and evaluate means to mitigate them.

To resolve these concerns, the Georgia Tech Research Institute (GTRI) recently began developing testing protocols for RFID technology in the health care setting. The test protocol development is being overseen by AIM Global, the international trade association representing automatic identification and mobility technology solution providers, and also includes MET Laboratories, a company that provides testing and certification services for medical devices.

“A comprehensive set of test protocols, which are sufficiently precise to permit repeatable results, is required to understand if there is an interaction between various types of RFID systems and active implantable medical devices, electronic medical equipment, in vitro diagnostic equipment and biologics. Only after the protocols are developed will we be able to investigate the cause of any interactions, the result of any interactions, and ways manufacturers might eliminate or mitigate interactions,” said Craig K. Harmon, president and CEO of Q.E.D. Systems and chairman of AIM Global’s RFID Experts Group. This group is overseeing the Health Care Initiative and includes representatives from 40 organizations in the United States, Europe and Asia.

GTRI researchers will test how RFID systems affect the function of implantable and wearable medical devices, such as pacemakers, implantable cardioverter defibrillators, neurostimulators, implantable infusion pumps and cardiac monitors.

“The internal components, firmware and hardware of every company’s devices are different, meaning that each device can respond differently to the same electromagnetic environment. Since there have been various preliminary tests and publications from different organizations indicating that there may or may not be issues with RFID system environments and these devices, it is important to standardize the way to test such devices,” said Ralph Herkert, director of GTRI’s Medical Device Test Center.

Herkert and Gisele Bennett, director of GTRI’s Electro-Optical Systems Laboratory, will evaluate and determine the best method for measuring whether interference takes place as a result of RFID emission in both active and passive RFID technologies covering the spectrum from low-frequency to ultra high-frequency.

The researchers will test whether radio frequency-emitting devices cause any negative effects on the medical devices, and under what conditions these effects might occur. Testing will also determine whether specific medical devices are particularly susceptible to certain radio frequency identification characteristics and if any corrective actions can be taken to mitigate such susceptibility.

Medical device testing is not new for GTRI, which established its Medical Device Test Center more than 14 years ago. The facility was created to enable manufacturers of implantable cardiac pacemakers and defibrillators to work with providers of electronic article surveillance (EAS) systems, used by retailers, libraries and other establishments to prevent theft and track inventory. The center’s original mission was to help manufacturers improve compatibility between implantable medical devices and EAS systems that radiate electromagnetic energy. In 2006, GTRI expanded its operations and facilities to test new types of security and logistical systems (SLS), including RFID.

To test the effects of RFID systems on medical devices, the researchers simulate real-world conditions by placing a medical device in a tank of saline solution that simulates the electrical characteristics of body tissue and fluid. The medical device is then exposed to different RFID technologies. Several tests are performed with the device placed in different orientations to represent how people typically interact with the emissions.

“We think the testing procedure for RFID systems will be similar to the EAS system procedure, but there are a few more challenges with the RFID systems because a person doesn’t always pass through a portal,” noted Bennett, who is also a member of AIM Global’s RFID Experts Group. “Medical devices can be affected by active tags with stronger signals or RFID systems reading passive tag signals.”

The test protocols developed by GTRI will be submitted to the U.S. Food and Drug Administration for concurrence, after which a worldwide certification program will be launched and other testing facilities will be invited to participate.

Funding to develop these test guidelines is currently being provided by GTRI, but the researchers are actively looking for external funding.

“We have more than 35 years of experience at GTRI testing medical device interference and we think that testing the effects of RFID on medical devices is an important area to pursue,” added Bennett.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Abby Vogel | Newswise Science News
Further information:

Further reports about: AIM EAS GTRI GTRI’s Medical Wellness RFID RFID systems implantable medical devices

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>