Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proof by Computer

10.11.2008
New computer tools have the potential to revolutionize the practice of mathematics by providing far more-reliable proofs of mathematical results than have ever been possible in the history of humankind.

These computer tools, based on the notion of "formal proof", have in recent years been used to provide nearly infallible proofs of many important results in mathematics.

A ground-breaking collection of four articles by leading experts, published today in the Notices of the American Mathematical SocietyNotices of the American Mathematical Society (http://www.ams.org/notices), explores new developments in the use of formal proof in mathematics.

When mathematicians prove theorems in the traditional way, they present the argument in narrative form. They assume previous results, they gloss over details they think other experts will understand, they take shortcuts to make the presentation less tedious, they appeal to intuition, etc. The correctness of the arguments is determined by the scrutiny of other mathematicians, in informal discussions, in lectures, or in journals. It is sobering to realize that the means by which mathematical results are verified is essentially a social process and is thus fallible. When it comes to central, well known results, the proofs are especially well checked and errors are eventually found.

Nevertheless the history of mathematics has many stories about false results that went undetected for a long time. In addition, in some recent cases, important theorems have required such long and complicated proofs that very few people have the time, energy, and necessary background to check through them. And some proofs contain extensive computer code to, for example, check a lot of cases that would be infeasible to check by hand. How can mathematicians be sure that such proofs are reliable?

To get around these problems, computer scientists and mathematicians began to develop the field of formal proof. A formal proof is one in which every logical inference has been checked all the way back to the fundamental axioms of mathematics. Mathematicians do not usually write formal proofs because such proofs are so long and cumbersome that it would be impossible to have them checked by human mathematicians. But now one can get "computer proof assistants" to do the checking. In recent years, computer proof assistants have become powerful enough to handle difficult proofs.

Only in simple cases can one feed a statement to a computer proof assistant and expect it to hand over a proof. Rather, the mathematician has to know how to prove the statement; the proof then is greatly expanded into the special syntax of formal proof, with every step spelled out, and it is this formal proof that the computer checks. It is also possible to let computers loose to explore mathematics on their own, and in some cases they have come up with interesting conjectures that went unnoticed by mathematicians. We may be close to seeing how computers, rather than humans, would do mathematics.

The four Notices articles explore the current state of the art of formal proof and provide practical guidance for using computer proof assistants. If the use of these assistants becomes widespread, they could change deeply mathematics as it is currently practiced. One long-term dream is to have formal proofs of all of the central theorems in mathematics. Thomas Hales, one of the authors writing in the Notices, says that such a collection of proofs would be akin to "the sequencing of the mathematical genome".

The four articles are:

Formal Proof, by Thomas Hales, University of Pittsburgh

Formal Proof---Theory and Practice, by John Harrison, Intel Corporation

Formal proof---The Four Colour Theorem, by Georges Gonthier, Microsoft
Research, Cambridge, England
Formal Proof---Getting Started, by Freek Wiedijk, Radboud University,
Nijmegen, Netherlands
The articles appear today in the December 2008 issue of the Notices
and are freely available at http://www.ams.org/notices.
Founded in 1888 to further mathematical research and scholarship, today the American Mathematical Society has more than 32,000 members. The Society fulfills its mission through programs and services that promote mathematical research and its uses, strengthen mathematical education, and foster awareness and appreciation of mathematics and its connections to other disciplines and to everyday life.

Prof. Thomas Hales | Newswise Science News
Further information:
http://www.ams.org/notices
http://www.ams.org

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>