Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress with the switch to faster computers

11.10.2013
A specialized switch that controls light can regulate the flow of optical data at a speed suitable to accelerate computers

Long-distance communication increasingly relies on networks of fiber-optic cables that carry data encoded in nimble beams of light. Conventional computer circuits, however, still use relatively sluggish electronic circuits to process this data.

Hong Cai of the A*STAR Institute of Microelectronics in Singapore and her co-workers have now developed a device that could help computers reach light speed. Their tiny mechanical system can switch a light signal on or off extremely quickly, potentially enabling all-optical computing and simplifying the interface between electronic and optical networks1. “All-optical devices could enable a large number of components to be housed on a single chip,” says Cai.

Various optical switching technologies already exist, including microelectromechanical systems (MEMS). These switches, however, take microseconds to flip from one state to another, far too slow for a computer application. Cai’s device is a much smaller nanoelectromechanical system (NEMS) that can switch in billionths of a second, with virtually no data loss.

“NEMS optical switches offer the potential for fast switching speed, low optical loss and low power consumption. And, they are easily integrated in large-scale arrays without complex packaging techniques,” says Cai.

The researchers etched their device from a thin sheet of silicon, forming a flexible ring 60 micrometers wide that is connected to a central pillar by four thin spokes. Two channels running through the underlying silicon skim past opposite edges of the ring; they act as waveguides for two beams of light. These channels pass no closer than 200 nanometers from the ring (see image).

When light carrying a signal passes through one of the channels, the light’s electromagnetic field establishes resonant oscillations around the ring. This draws energy from the beam and prevents the data from travelling any further — the switch is effectively ‘off’.

To flip the switch, a low-power beam of 10 milliwatts traveling along the other channel establishes a similar resonance that slightly warps the ring, bending its edges downwards by just a few nanometers. This warping motion changes the resonant frequency of the ring, preventing it from coupling to the signal beam and allowing the data to continue unimpeded. Switching the signal on took just 43.5 nanoseconds, and the researchers observed a large difference in signal light output between the ‘on’ and ‘off’ states.

“As such, a low-power optical signal can be used to modulate a high-power optical signal at high speed,” says Cai. Her team is now working on integrating the devices into circuits.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Cai, H., Dong, B., Tao, J. F., Ding, L., Tsai, J. M. et al. A nanoelectromechanical systems optical switch driven by optical gradient force. Applied Physics Letters 102, 023103 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>