Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress with the switch to faster computers

11.10.2013
A specialized switch that controls light can regulate the flow of optical data at a speed suitable to accelerate computers

Long-distance communication increasingly relies on networks of fiber-optic cables that carry data encoded in nimble beams of light. Conventional computer circuits, however, still use relatively sluggish electronic circuits to process this data.

Hong Cai of the A*STAR Institute of Microelectronics in Singapore and her co-workers have now developed a device that could help computers reach light speed. Their tiny mechanical system can switch a light signal on or off extremely quickly, potentially enabling all-optical computing and simplifying the interface between electronic and optical networks1. “All-optical devices could enable a large number of components to be housed on a single chip,” says Cai.

Various optical switching technologies already exist, including microelectromechanical systems (MEMS). These switches, however, take microseconds to flip from one state to another, far too slow for a computer application. Cai’s device is a much smaller nanoelectromechanical system (NEMS) that can switch in billionths of a second, with virtually no data loss.

“NEMS optical switches offer the potential for fast switching speed, low optical loss and low power consumption. And, they are easily integrated in large-scale arrays without complex packaging techniques,” says Cai.

The researchers etched their device from a thin sheet of silicon, forming a flexible ring 60 micrometers wide that is connected to a central pillar by four thin spokes. Two channels running through the underlying silicon skim past opposite edges of the ring; they act as waveguides for two beams of light. These channels pass no closer than 200 nanometers from the ring (see image).

When light carrying a signal passes through one of the channels, the light’s electromagnetic field establishes resonant oscillations around the ring. This draws energy from the beam and prevents the data from travelling any further — the switch is effectively ‘off’.

To flip the switch, a low-power beam of 10 milliwatts traveling along the other channel establishes a similar resonance that slightly warps the ring, bending its edges downwards by just a few nanometers. This warping motion changes the resonant frequency of the ring, preventing it from coupling to the signal beam and allowing the data to continue unimpeded. Switching the signal on took just 43.5 nanoseconds, and the researchers observed a large difference in signal light output between the ‘on’ and ‘off’ states.

“As such, a low-power optical signal can be used to modulate a high-power optical signal at high speed,” says Cai. Her team is now working on integrating the devices into circuits.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Cai, H., Dong, B., Tao, J. F., Ding, L., Tsai, J. M. et al. A nanoelectromechanical systems optical switch driven by optical gradient force. Applied Physics Letters 102, 023103 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>