Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programming the smart home: ‘If this, then that’

29.04.2014

Homes already have intelligent devices beyond the TV remote — garage door openers, coffee makers, laundry machines, lights, HVAC — but each has its own arcane steps for programming. User research now shows that “trigger-action programming” could give users a reliable and simple way to control everything, as easy as “If this, then that.”

The idea of a smart home sounds promising enough. Who doesn’t want a house full of automated gadgets — from light switches to appliances to heating systems — that know exactly when to turn on, turn off, heat up or power down?


I’m up. Where’s the coffee?

The idea is to provide owners with an easy way to program all domestic devices. The “IF (this) THEN (that)” trigger-action approach has been shown to work for users who are not programmers. View YouTube Clip: https://www.youtube.com/watch?v=BNVQcs5yCZg

But in order for all those devices to do what they’re supposed to do, they’ll need to be programed — a task the average homeowner might not have the interest or the tech-savvy to perform. And nobody wants to call tech support just to turn on a light.

A group of computer science researchers from Brown and Carnegie Mellon universities may have found a workable programming solution. Through a series of surveys and experiments, the researchers show that a style of programming they term “trigger-action programming” provides a powerful and intuitive means of talking to smart home gadgets.

The research was presented today at the Conference on Human Factors in Computing Systems (CHI2014) in Toronto. The work was co-authored by Blase Ur, a graduate student at Carnegie Mellon, Brown undergraduates Melwyn Pak Yong Ho and Elyse McManus, and Michael Littman, professor of computer science at Brown.

The trigger-action paradigm is already gaining steam on the web. It’s used perhaps most prominently on the website IFTTT.com (If This, Then That), which helps people automate tasks across various Internet services. Users create “recipes” using simple if-then statements — for example: “If somebody tags me in a Facebook photo, then upload it to Instagram.” The website interfaces with both service providers, and the action happens automatically each time it’s triggered.

“We live in a world now that’s populated by machines that are supposed to make our lives easier, but we can’t talk to them. Everybody out there should be able to tell their machines what to do.” Credit: Mike Cohea/Brown UniversityIFTTT.com started out as a tool to link websites, but it has recently added the capability to command a few internet-connected devices, like Belkin’s WeMo power outlet and the Philips Hue lightbulb. That got Littman and his team thinking perhaps the trigger-action model employed by IFTTT might be a good fit for home automation.

“As a programming model, it’s simple and there are real people using it to control their devices,” Littman said. “But the question we asked in this paper was: Does it work for the [home automation] tasks people want to do, or is it perhaps too simple?”

To find out, the researchers started by asking workers on Mechanical Turk, Amazon’s crowdsourcing marketplace, what they might want a hypothetical smart home to do. Then the team evaluated answers from 318 respondents to see if those activities would require some kind of programming, and if so, whether the program could be expressed as triggers and actions.

The survey responses varied from the mundane (“start the coffee pot from the bedroom”) to the outlandish (“I would want my home to be able to shoot lasers at intruders.”). A majority of activities people wanted — “Notify me when my pet gets out of the back yard” or “Start brewing coffee 15 minutes before my alarm” — would require some kind of programming to get the devices on the same page as the user. Most of the programming tasks fit nicely into the trigger-action format, the survey found. Seventy-eight percent of responses could be expressed as a single trigger and a single action. Another 22 percent involved some combination of multiple triggers or multiple actions.

The next step for the researchers was to see how well people could actually design recipes to accomplish tasks. To do that, they used two interfaces designed by McManus, one of the undergraduate researchers, and enlisted Mechanical Turkers to make recipes with the interfaces.

“We based both [interfaces] on ‘If This Then That,’” McManus said. “But then we made one of them slightly more complex, so you could add multiple triggers and multiple actions.”

The study showed that participants were able to use both interfaces — the simpler one and the one with multiple triggers and actions — fairly well. Participants who didn’t have any programming experience performed just as well on the tasks as those who did.

Taken together, the researchers say, the results suggest that trigger-action programming is flexible enough to do what people want a smart home to do, and simple enough that non-programmers can use it. Melwyn Pak, one of the Brown undergraduates on the project, finds that encouraging.

“People are more than ready to have some form of finer control of their devices,” he said of the results. “You just need to give them a tool that allows them to operate those devices in an intuitive way.”

Littman, who has been studying end-user programming of electronic devices for several years, agrees.

“We live in a world now that’s populated by machines that are supposed to make our lives easier, but we can’t talk to them,” he said. “Everybody out there should be able to tell their machines what to do. This paper is our attempt to start thinking about how to bridge that gap.”

Kevin Stacey | Eurek Alert!
Further information:
http://news.brown.edu/pressreleases/2014/04/smarthome

More articles from Information Technology:

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

nachricht Engineers take first step toward flexible, wearable, tricorder-like device
24.05.2016 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>