Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New programming language to plug information leaks in software

The current method for preventing users and unauthorised individuals from obtaining information to which they should not have access in data programs is often to have code reviewers check the code manually, looking for potential weaknesses. Niklas Broberg of the University of Gothenburg has developed a new programming language which automatically identifies potential information leaks while the program is being written.

The most common causes of security issues in today’s software are not inadequate network security, poor security protocols or weak encryption mechanisms. In most cases, they are the result of imperfectly written software that contains the potential for information leaks.

Users are able to exploit leaks and loopholes that are unintentionally introduced during programming, to obtain more information than they should have access to. Unauthorised users may also be able to manipulate sensitive information in the system, such as that contained in a database.

Currently, the most common method of preventing leaks, loopholes and manipulation is to rely on so-called code reviewers, who “proof-read” the code manually in order to identify errors and deficiencies once the programmers are finished with the code.

Paragon identifies potential information leaks while the program is being written

As a solution to these problems, Niklas Broberg has developed the programming language Paragon. The methodology is presented in his thesis "Practical, Flexible Programming with Information Flow Control" which was written in August 2011.

“The main strength of Paragon is its ability to automatically identify potential information leaks while the program is being developed,” says Niklas Broberg. “Paragon is an extension of the commonly-used programming language Java and has been designed to be easy to use. A programmer will easily be able to add my specifications to his or her Java program, thus benefiting from the strong security guarantees that the language provides.”

Two-stage security process

Niklas Broberg’s method has two stages. The first stage specifies how information in the software may be used, who should be allowed access to it and under what conditions. Stage two of the security process takes place during compilation, where the program's use of information is analysed in depth. If the analysis identifies a risk for sensitive information leaking or being manipulated, the compiler reports an error, enabling the programmer to resolve the issue immediately. The analysis is proven to provide better guarantees than all previous attempts in this field.

“Achieving information security in a system requires a chain of different measures, with the system only being as secure as its weakest link,” says Niklas Broberg. “We can have completely effective methods for guaranteeing the authentication of users or encryption of data, but which can be circumvented in practice due to information leaks. Security loopholes in software are currently the most common source of vulnerabilities in our computer systems and it is high time we take these problems seriously.”

For more information, please contact: Niklas Broberg
Telephone: +46 (0)31–772 1058, +46 (0)70–649 35 46

Helena Aaberg | idw
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018 | Physics and Astronomy

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>