Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing polarization puzzles

28.03.2014

Using electron beams to encode data in nanocrystals could help to improve the capacity of computer memory devices

Ferroelectric materials have an intrinsic electrical polarization caused by a small shift in the position of some of their atoms that occurs below a critical point called the Curie temperature. This polarization can be switched by an external electric field, an effect exploited in some computer memory devices.


A simulated polarization pattern (top left), polarization vectors within the simulation (top right), and polarization patterns visualized using transmission electron microscopy (bottom left) and piezoresponse force microscopy (bottom right) in the ferroelectric material barium titanate.

Reproduced from Ref. 1 © 2014 American Physical Society

By explaining the origin of puzzling polarization patterns previously seen in a ferroelectric material called barium titanate, Rajeev Ahluwalia and Nathaniel Ng at the A*STAR Institute of High Performance Computing in Singapore and colleagues have stumbled on a way to ‘write’ polarization patterns in nanoscale ferroelectric materials1.

Ferroelectric crystals contain a patchwork of nanoscale ‘domains’, each with a different intrinsic polarization. While an understanding of how these domains form would help to develop reliable applications for ferroelectric materials, two different imaging techniques previously revealed contradictory results about the domains in barium titanate. Ahluwalia’s team therefore set out to solve this puzzle.

One technique — transmission electron microscopy (TEM) — which uses a beam of electrons to probe a crystal’s properties, suggests that the domains comprise long strips arranged in four quadrants, where the net polarization in each quadrant points inward or outward from the surface. The other technique — piezoresponse force microscopy (PFM) — also reveals a quadrant formation, but the polarizations are parallel to the surface so that the overall polarization of the crystal forms a closed loop.

Ahluwalia and his colleagues hypothesized that the TEM’s electron beam changes the polarization pattern in the sample. PFM, in contrast, uses a sharp tip to detect deformations in the material caused by a localized electric field.

The scientists developed a theoretical model, which revealed that an increase in electron density in the crystal produced the same polarization pattern that they observed with TEM. They also calculated that the radial electric field created by an electron beam could generate other distinctive features of this pattern.

Under normal conditions, an electron beam might not alter the domains. But if the beam is strong enough to heat the sample above the Curie temperature, the material loses its intrinsic polarization. As it cools, the radial electric field induced by the electron beam shapes how the domains reform.

The team’s discovery serves as a warning that electron beam techniques could alter the very domains that researchers are seeking to measure. However, electron beams could be used to deliberately alter polarization patterns in ferroelectric materials, something that is potentially useful for the next generation of memory devices with higher storage densities, says Ahluwalia.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Associated links

Journal information

Ahluwalia, R., Ng, N., Schilling, A., McQuaid, R. G. P., Evans, D. M. et al. Manipulating ferroelectric domains in nanostructures under electron beams. Physical Review Letters 111, 165702 (2013).

A*STAR Research | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Computing Ferroelectric Science TEM Technology materials polarization temperature

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>