Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Probes for the Brain

11.02.2013
The Department of Microsystems Engineering of the University of Freiburg is Coordinating the Research Project NeuroSeeker

Developing tiny probes for research and brain-related medical applications – that is the goal of the project NeuroSeeker, launched in February 2013 with a kick-off event in Leuven, Belgium.


Example of a neural probe with 752 microelectrodes distributed on four-millimeter-long shafts, like those developed in the project NeuroProbes: The scientists collaborating on the new research project NeuroSeeker want to build on this work./IMTEK

The interdisciplinary project pools the expertise of ten partner institutions from Europe and Canada. The University of Freiburg will receive around 1.7 million euros from the European Union (EU) in the coming four years for its contribution. The project coordinator is Dr. Patrick Ruther, who works under Prof. Dr. Oliver Paul at the Microsystems Materials Laboratory of the University of Freiburg’s Department of Microsystems Engineering (IMTEK).

NeuroSeeker is an extension of the successful EU project NeuroProbes, which was completed at the end of the year 2010. The scientists are developing new probes for recording neural signals and stimulating optical tissue. In order to attain a fundamental understanding of the brain, it is essential to derive signals directly from its basic building blocks, the neurons.

The probes will thus be designed to measure and analyze the signals of individual nerve cells and their connections, and if necessary to optically or electrically stimulate nervous tissue. They will serve as instruments for basic neuroscientific research as well as for medical applications, for instance in the diagnosis of epilepsy. The partner institutions are the research center Imec in Leuven, Belgium; the University of Parma, Italy; the Dutch universities Amsterdam and Nijmegen; and the University of Lethbridge, Canada.

Other institutions contributing their expertise to the project are the Fundação Champalimaud from Portugal, the Max Planck Society from Germany, the Hungarian Academy of Science, and the joint IMTEK-Imec spin-off ATLAS Neuroengineering from Belgium. NeuroSeeker will support the new Cluster of Excellence BrainLinks-BrainTools of the University of Freiburg with its competence in neurotechnology and brain-machine interfaces.

Contact:
Dr. Patrick Ruther
Microsystems Materials Laboratory
Department of Microsystems Engineering – IMTEK
University of Freiburg
Phone: +49 (0)761 / 203-7197
E-Mail: ruther@imtek.de
Katrin Grötzinger
Communication & Marketing
Department of Microsystems Engineering – IMTEK
University of Freiburg
Phone: +49 (0)761 / 203-73242
E-Mail: katrin.groetzinger@imtek.uni-freiburg.de

Katrin Grötzinger | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>