Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Present and Future of 3D

25.01.2011
Takashi Kawai, a Professor at the Faculty of Science and Engineering, Waseda University, analyses the current boom in 3D entertainment and the potential future applications of 3D technology.

The Beginning of the 3D Era and the Boom Phenomenon

2010 has been called the beginning of the 3D era, a year in which the term 3D frequently appeared in the media. Here, I use 3D to mean three-dimensional images, or to give them their proper name, stereoscopic images, reproduced to appear in front of or behind the screen. The word stereoscopic was coined by the inventor of the stereoscope, Sir Charles Wheatstone, who first used the term in a paper published in 1838. It derives from the Greek words stereos, meaning solid, and scope, meaning viewing instrument.

The phenomenon of periodic booms in 3D is often pointed out. These were mainly 3D movie booms that occurred in the 1950s and 1980s, and the present day is sometimes referred to as the third boom. The fact that 3D has until now never developed beyond a temporary fad is an indication of the difficulty in popularizing it. Nevertheless, the repeated appearance of such booms does suggest that 3D is a kind of dream technology for human beings. Here I would like to mention the characteristic ripple effect of present day 3D. The rapid development outside the film industry of 3D-compatible TVs, game consoles and mobile devices currently being announced and released by various manufacturers has exceeded the expectations of most researchers such as myself, as well as industry related people.

Issues of Present Day 3D

Although the spread of 3D is expected to result in the creation of new industries and culture, it is still uncertain what the merits and added value will be for users. When asked, “What is the advantage of 3D movies or TV?” it is not enough to simply answer that “things leap out of or into the screen”. Scientific verification of whether 3D can really convey different sensations than 2D, or of what elements of 3D people find appealing, is urgently required so that the current boom does not turn into just another temporary fad.

At our laboratory, we have been conducting an experimental study of current 3D issues as they relate to the user experience. From Figure 1 we can see that the line of sight is concentrated mostly on people, and especially faces, when watching a movie in 2D. Figure 2 is the result when viewing the same movie in 3D. Here we see that the line of sight is concentrated not only on people’s faces but also on the objects in the foreground. To clarify the cause of such a distinctive difference, we have performed a range of detailed analyses, especially of the link with the spatial construction of visual data.

Initiatives toward the Future of 3D

While tackling the present day tasks of explaining viewer recognition and emotional aspects, our laboratory is also facing the challenge of looking to the future of 3D. One such direction is new applications of 3D. An example of this is three-dimensional character blocks for literacy learning developed through joint research with the Division of Developmental Neuropsychology at the National Center for Child Health and Development. The intention is to utilize spatial reasoning capacity in literacy learning by adding information of depth according to the stroke order of a character to its ordinary two-dimensional shape. Such a conceptual shift from representing real shapes three-dimensionally to envisioning a specific effect and venturing to express it three-dimensionally could produce an unprecedented demand for 3D.

Another direction we have taken relates to the extension towards perceptual experience through 3D representation other than vision. Figure 3 shows an example of this, a tactile behavioral illusion system. By combining 3D and tactile stimulation based on certain measurements, this system enables people to experience sensations that have not actually been triggered. Specifically, we can create an illusion related to bodily sensation, a feeling that a stationary object touching one’s hand is moving across the surface of that hand. Such a shift in awareness from a single sense to the integration of multiple senses, or in other words, from vision to brain function, could be vital in shaping the 3D-based media of the next generation.

The desire to see remote things or to present them so that they can be seen is a fundamental trait in human beings. That is to say, interest in and expectations for 3D are perfectly natural, and so the future of 3D also seems linked, to some extent, to human potential.

About the author:

Takashi Kawai, Professor, Faculty of Science and Engineering, Waseda University

Graduated in 1993 from the Department of Human Health Sciences, School of Human Sciences, Waseda University. Having completed a doctoral course at Waseda University’s Graduate School of Human Sciences in 1998, he went on to hold several positions at the University, including Research Associate at the School of Human Sciences, Full-time Lecturer at the Global Information and Telecommunication Institute (GITI), and Assistant Professor at the Graduate School of Global Information and Telecommunication Studies (GITS). Since 2008 he has held the concurrent positions at Waseda University of Professor at GITS and Professor in the Department of Intermedia Art and Science at the School of Fundamental Sciences and Engineering. Dr. Kawai has a doctorate in Human Sciences. His primary works include Fundamentals of 3D Image Expression [3D Rittai eizou hyougen no kiso]

waseda university | Research asia research news
Further information:
http://www.yomiuri.co.jp/adv/wol/dy/opinion/science_110124.htm
http://www.researchsea.com

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>