Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Practice Can Make Search-and-Rescue Robot Operators More Accurate

06.05.2011
Urban search and rescue (USAR) task forces are essential for locating, stabilizing, and extricating people who become trapped in confined spaces following a catastrophic event.

Sometimes the search area is too unstable for a live rescue team, so rescuers have turned to robots wielding video cameras. Most recently, the USAR robots have been employed by rescuers following the devastating Japanese earthquake and tsunami. The rescuers control, or teleoperate, from a safe location. Teleoperation can be problematic, as robots frequently become stuck, which can destabilize the search area and hinder rescue operations.

“The World Trade Center site was the first major real-world evaluation of robots as tools for USAR,” says Keith Jones, an HF/E researcher at Texas Tech University. “Overall, the robots performed well. One problem that did surface, however, was that the robots got stuck, a lot.” Jones, with coauthors Brian Johnson and Elizabeth Schmidlin, published a study of USAR robot teleoperation in a special issue of the Journal of Cognitive Engineering and Decision Making on human-robot interaction.

In a series of experiments, Jones and colleagues asked participants to drive a USAR robot through the openings of various structures. Successful navigation through openings depended on the size of the robot and the operator’s level of driving skill. Results indicated that, surprisingly, untrained operators could accurately judge the robot’s size relative to the opening. However, operators perceived their skill at guiding the USAR robot through the opening as greater than their performance demonstrated. This judgment factors in the size of the robot, the operator's driving skill, and the size of the aperture. Jones et al. did find that, with practice, participants improved their driveability judgments.

“Our research seeks to understand why operators are getting their robots stuck,” says Jones. “With that knowledge, hopefully, we can reduce the problem, and increase the amount of time that operators spend searching for survivors.”

For a full copy of the article, go to http://edm.sagepub.com/content/5/1/10.full.pdf+html or contact HFES Communications Director Lois Smith (lois@hfes.org, 310/394-1811).

The Human Factors and Ergonomics Society is the world's largest nonprofit individual-member, multidisciplinary scientific association for human factors/ergonomics professionals, with more than 4,500 members globally. HFES members include psychologists and other scientists, designers, and engineers, all of whom have a common interest in designing systems and equipment to be safe and effective for the people who operate and maintain them. Watch science news stories about other HF/E topics at the HFES Web site. “Human Factors and Ergonomics: People-Friendly Design Through Science and Engineering”

Plan to attend the HFES 55th Annual Meeting, September 19-23: http://www.hfes.org/web/HFESMeetings/2011annualmeeting.html

Lois Smith | EurekAlert!
Further information:
http://www.hfes.org

Further reports about: Ergonomics HFES Operators Search-and-Rescue video camera

More articles from Information Technology:

nachricht Goodbye, login. Hello, heart scan
26.09.2017 | University at Buffalo

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>