Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Practice Can Make Search-and-Rescue Robot Operators More Accurate

06.05.2011
Urban search and rescue (USAR) task forces are essential for locating, stabilizing, and extricating people who become trapped in confined spaces following a catastrophic event.

Sometimes the search area is too unstable for a live rescue team, so rescuers have turned to robots wielding video cameras. Most recently, the USAR robots have been employed by rescuers following the devastating Japanese earthquake and tsunami. The rescuers control, or teleoperate, from a safe location. Teleoperation can be problematic, as robots frequently become stuck, which can destabilize the search area and hinder rescue operations.

“The World Trade Center site was the first major real-world evaluation of robots as tools for USAR,” says Keith Jones, an HF/E researcher at Texas Tech University. “Overall, the robots performed well. One problem that did surface, however, was that the robots got stuck, a lot.” Jones, with coauthors Brian Johnson and Elizabeth Schmidlin, published a study of USAR robot teleoperation in a special issue of the Journal of Cognitive Engineering and Decision Making on human-robot interaction.

In a series of experiments, Jones and colleagues asked participants to drive a USAR robot through the openings of various structures. Successful navigation through openings depended on the size of the robot and the operator’s level of driving skill. Results indicated that, surprisingly, untrained operators could accurately judge the robot’s size relative to the opening. However, operators perceived their skill at guiding the USAR robot through the opening as greater than their performance demonstrated. This judgment factors in the size of the robot, the operator's driving skill, and the size of the aperture. Jones et al. did find that, with practice, participants improved their driveability judgments.

“Our research seeks to understand why operators are getting their robots stuck,” says Jones. “With that knowledge, hopefully, we can reduce the problem, and increase the amount of time that operators spend searching for survivors.”

For a full copy of the article, go to http://edm.sagepub.com/content/5/1/10.full.pdf+html or contact HFES Communications Director Lois Smith (lois@hfes.org, 310/394-1811).

The Human Factors and Ergonomics Society is the world's largest nonprofit individual-member, multidisciplinary scientific association for human factors/ergonomics professionals, with more than 4,500 members globally. HFES members include psychologists and other scientists, designers, and engineers, all of whom have a common interest in designing systems and equipment to be safe and effective for the people who operate and maintain them. Watch science news stories about other HF/E topics at the HFES Web site. “Human Factors and Ergonomics: People-Friendly Design Through Science and Engineering”

Plan to attend the HFES 55th Annual Meeting, September 19-23: http://www.hfes.org/web/HFESMeetings/2011annualmeeting.html

Lois Smith | EurekAlert!
Further information:
http://www.hfes.org

Further reports about: Ergonomics HFES Operators Search-and-Rescue video camera

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>