Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful supercomputer peers into the origin of life

05.10.2010
Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are helping scientists unravel how nucleic acids could have contributed to the origins of life.

A research team led by Jeremy Smith, who directs ORNL's Center for Molecular Biophysics and holds a Governor's Chair at University of Tennessee, used molecular dynamics simulation to probe an organic chemical reaction that may have been important in the evolution of ribonucleic acids, or RNA, into early life forms.


New research at Oak Ridge National Laboratory explains how a ribonucleic acid enzyme, or ribozyme (pictured), uses magnesium ions (seen as spheres) to accelerate a significant reaction in organic chemistry.

Certain types of RNA called ribozymes are capable of both storing genetic information and catalyzing chemical reactions - two necessary features in the formation of life. The research team looked at a lab-grown ribozyme that catalyzes the Diels-Alder reaction, which has broad applications in organic chemistry.

"Life means making molecules that reproduce themselves, and it requires molecules and are sufficiently complex to do so," Smith said. "If a ribozyme like the Diels-Alderase is capable of doing organic chemistry to build up complex molecules, then potentially something like that could have been present to create the building blocks of life."

The research team found a theoretical explanation for why the Diels-Alder ribozyme needs magnesium to function. Computational models of the ribozyme's internal motions allowed the researchers to capture and understand the finer details of the fast-paced reaction. The static nature of conventional experimental techniques such as chemical probing and X-ray analysis had not been able to reveal the dynamics of the system.

"Computer simulations can provide insight into biological systems that you can't get any other way," Smith said. "Since these structures are changing so much, the dynamic aspects are difficult to understand, but simulation is a good way of doing it."

Smith explained how their calculations showed that the ribozyme's internal dynamics included an active site, or "mouth," which opens and closes to control the reaction. The concentration of magnesium ions directly impacts the ribozyme's movements.

"When there's no magnesium present, the mouth closes, the substrate can't get in, and the reaction can't take place. We found that magnesium ions bind to a special location on the ribozyme to keep the mouth open," Smith said.

The research was published as "Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme" in the Journal of the American Chemical Society. The research team included Tomasz Berezniak and Mai Zahran, who are Smith's graduate students, and Petra Imhof and Andres Jäschke from the University of Heidelberg.

Smith's research was supported by Laboratory Directed Research and Development program funding. The bulk of the simulations were performed on the Kraken supercomputer at the UT/ORNL National Institute for Computational Sciences, supported by a National Science Foundation Teragrid allocation, and the resulting data were analyzed on the Heidelberg Linux Cluster System at the Interdisciplinary Center for Scientific Computing of the University of Heidelberg.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>