Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More powerful Internet access on airplanes and trains

01.10.2009
For the first time, researchers at Chalmers University of Technology in Gothenburg, Sweden, and Fraunhofer Heinrich Hertz Institute in Berlin/Technical University Berlin, have demonstrated 60 GHz broadband radio for wireless transmission of HD video data, HDTV, live. The findings mean more robust transmissions that are less susceptible to interference.

This opens up the possibility of using the 60 GHz band for applications requiring rapid data transfer, such as uncompressed transmission of HDTV, fast Internet access for passengers on airplanes and trains, and applications in medical technology and TV studios.

Previous experiments with 60 GHz were based on transmitters and receivers alone. This means that data transmission is disrupted when something passes the antenna lobe, which is not acceptable for wireless networks. Now these scientists have used a technology called Multiple-Input-Multiple-Output, MIMO. With this technology antennas do not need to be lined up and previous problems with shadowing, interference, and blocking are eliminated.

With MIMO technology, several transmitters and receivers are used for transmission of the signal; the same signal is transmitted with a slight time delay to the receiver antennas, with the signal taking different paths. The signals are spliced together using special algorithms in the receiver so that the correct information can be extracted. Through a winning combination of findings from several years of research on MIMO algorithms and baseband electronics, and many years of experience from designing compact multifunctional MMIC (Monolithic Microwave Integrated Circuits) for 60 GHz, these scientists have successfully managed to pool their knowledge and construct the MIMO system.

The 60 GHz band is a license-free frequency band with several GHz of bandwidth, which opens up the possibility of wireless communication with transmission speeds of several Gbit per second.

For further information, please contact:
Herbert Zirath, Professor of high-speed electronics at the Division of Microwave Electronics at Chalmers University of Technology, Göteborg, Sweden.
Phone: +46 (0)31-772 1852
herbert.zirath@chalmers.se
Pressofficer Sofie Hebrand; sofie.hebrand@chalmers.se;+46 736-79 35 90

Sofie Hebrand | idw
Further information:
http://www.vr.se
http://www.chalmers.se/mc2/EN/laboratories/microwave-electronics

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>