Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More powerful Internet access on airplanes and trains

01.10.2009
For the first time, researchers at Chalmers University of Technology in Gothenburg, Sweden, and Fraunhofer Heinrich Hertz Institute in Berlin/Technical University Berlin, have demonstrated 60 GHz broadband radio for wireless transmission of HD video data, HDTV, live. The findings mean more robust transmissions that are less susceptible to interference.

This opens up the possibility of using the 60 GHz band for applications requiring rapid data transfer, such as uncompressed transmission of HDTV, fast Internet access for passengers on airplanes and trains, and applications in medical technology and TV studios.

Previous experiments with 60 GHz were based on transmitters and receivers alone. This means that data transmission is disrupted when something passes the antenna lobe, which is not acceptable for wireless networks. Now these scientists have used a technology called Multiple-Input-Multiple-Output, MIMO. With this technology antennas do not need to be lined up and previous problems with shadowing, interference, and blocking are eliminated.

With MIMO technology, several transmitters and receivers are used for transmission of the signal; the same signal is transmitted with a slight time delay to the receiver antennas, with the signal taking different paths. The signals are spliced together using special algorithms in the receiver so that the correct information can be extracted. Through a winning combination of findings from several years of research on MIMO algorithms and baseband electronics, and many years of experience from designing compact multifunctional MMIC (Monolithic Microwave Integrated Circuits) for 60 GHz, these scientists have successfully managed to pool their knowledge and construct the MIMO system.

The 60 GHz band is a license-free frequency band with several GHz of bandwidth, which opens up the possibility of wireless communication with transmission speeds of several Gbit per second.

For further information, please contact:
Herbert Zirath, Professor of high-speed electronics at the Division of Microwave Electronics at Chalmers University of Technology, Göteborg, Sweden.
Phone: +46 (0)31-772 1852
herbert.zirath@chalmers.se
Pressofficer Sofie Hebrand; sofie.hebrand@chalmers.se;+46 736-79 35 90

Sofie Hebrand | idw
Further information:
http://www.vr.se
http://www.chalmers.se/mc2/EN/laboratories/microwave-electronics

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>