Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Poor-man’s supercomputing goes commercial

Grid computing technology has long been the darling of cash-strapped academics in desperate need of raw processing power. Now a groundbreaking European research effort has created an industrial-strength platform already appearing in commercial applications.

The SIMDAT project has created a portfolio of tools and services that can finally bring the power of grid computing to industrial applications. Grids capture all the resources of connected computers, from storage to computation.

But up to now grids mostly languished in research labs, where they were used to provide massive processing power or to enable large-scale database management. SIMDAT developed essential business functions for grids, like industrial strength service-level agreements, management and security.

It will mean the advent of virtual organisations, a long-unfulfilled promise of information technology. Grids for business have huge applications in product development, both for data crunching and collaboration, and this was the focus of SIMDAT’s work in the automotive, pharmaceutical, aerospace and weather sectors.

But that is the just the beginning, and the ground broken by SIMDAT will prove a fertile field for grid technology over the next decade. Their work and solutions are relevant to other commercial areas and other industrial sectors. SIMDAT partners are already looking at the potential of adapting their work to new industrial sectors, like shipping and media production.

The commercialisation efforts are already well underway and began months before SIMDAT completed the EU-funded part of its work. Elements of SIMDAT’s wide-ranging research are already appearing in commercial applications.

Compressed data

Take data compression, for example, one small aspect of SIMDAT’s vast research and development programme. SIMDAT made three improvements related to data compression. Large data transfers – typical in grid applications – are now more efficient.

First, it boosted basic compression by a factor of 10, a huge achievement in itself. Second, it developed meta-models. By looking at a series of related datasets, computer scientists found that it was possible to ‘summarise’ their results in a meta-model, and this meta-model provided an accurate analysis of the whole dataset. So data could be exchanged as a meta-model and still be accurate.

The third improvement means it is now possible to make complex queries within summaries (such as why did the behaviour change, or what caused a fault?). By combining these achievements, SIMDAT developed state-of-the-art data compression for industrial grid deployments.

“Data compression technology we developed is now used by most of the automotive companies in Germany and is going to be used by 30 percent of the automobile companies worldwide – so it is already a mature product. And meta-modelling has become a standard technology inside BAE Systems for numerical optimisation,” explains Clemens-August Thole, Fraunhofer SCAI, SIMDAT project coordinator.

Weather without borders

One of SIMDAT’s most advanced commercialisation initiatives is VGISC (pronounced Vegis), the Virtual Global Information System Centre. “It is now deployed at 11 met centres worldwide and it is a prototype for a standard to be proposed by the World Meterological Organisation (WMO),” Thole states.

Weather does not recognise frontiers, and while national organisations can easily access weather data within their territory, analysing border regions is a lot more difficult.

Currently, meteorologists and climate researchers must use different tools for data from different national weather centres. VGISC overcomes that problem by leaving all the management, conversion and delivery of data to the SIMDAT portfolio. The SIMDAT solution also provides analysis tools.

SIMDAT is partnered with weather centres in the UK, Germany and France, but VGISC implements part of the WMO’s World Information System (WIS). “SIMDAT project is the first and only prototype for a WIS implementation. Ultimately, all the met centres worldwide would adapt this software,” explains Thole. “That’s the plan.”

Scientists will be able to access data from anywhere in the world through their web browser. This will be a huge achievement, involving petabytes of information in one of the most complex scientific fields, involving observations, simulations, analysis and prediction.

Setting the standards

SIMDAT is not only a commercial success, it is important in the world of standards, working with the Web Services Resource Framework (WSRF), the Open Grid Forum and W3C (World Wide Web Consortium), and has been active in Global Information Systems via its work with the WMO.

SIMDAT is a vast project. “You have some results already available as... commercial products (more are to come within the next two years), and then there are also some basic research results, which are more ideas, shown in some prototypes. [These] might turn into commercial solutions, but then again might not,” Thole notes.

The upshot, though, is that SIMDAT has already brought commercial solutions to industry, and helped to set the standards for the technology. The project’s impact will be felt for a long time.

The SIMDAT project received funding from the ICT strand of the Sixth Framework Programme for research.

This is the third and last part of a three-part series on SIMDAT.

Christian Nielsen | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>