Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poor-man’s supercomputing goes commercial

19.12.2008
Grid computing technology has long been the darling of cash-strapped academics in desperate need of raw processing power. Now a groundbreaking European research effort has created an industrial-strength platform already appearing in commercial applications.

The SIMDAT project has created a portfolio of tools and services that can finally bring the power of grid computing to industrial applications. Grids capture all the resources of connected computers, from storage to computation.

But up to now grids mostly languished in research labs, where they were used to provide massive processing power or to enable large-scale database management. SIMDAT developed essential business functions for grids, like industrial strength service-level agreements, management and security.

It will mean the advent of virtual organisations, a long-unfulfilled promise of information technology. Grids for business have huge applications in product development, both for data crunching and collaboration, and this was the focus of SIMDAT’s work in the automotive, pharmaceutical, aerospace and weather sectors.

But that is the just the beginning, and the ground broken by SIMDAT will prove a fertile field for grid technology over the next decade. Their work and solutions are relevant to other commercial areas and other industrial sectors. SIMDAT partners are already looking at the potential of adapting their work to new industrial sectors, like shipping and media production.

The commercialisation efforts are already well underway and began months before SIMDAT completed the EU-funded part of its work. Elements of SIMDAT’s wide-ranging research are already appearing in commercial applications.

Compressed data

Take data compression, for example, one small aspect of SIMDAT’s vast research and development programme. SIMDAT made three improvements related to data compression. Large data transfers – typical in grid applications – are now more efficient.

First, it boosted basic compression by a factor of 10, a huge achievement in itself. Second, it developed meta-models. By looking at a series of related datasets, computer scientists found that it was possible to ‘summarise’ their results in a meta-model, and this meta-model provided an accurate analysis of the whole dataset. So data could be exchanged as a meta-model and still be accurate.

The third improvement means it is now possible to make complex queries within summaries (such as why did the behaviour change, or what caused a fault?). By combining these achievements, SIMDAT developed state-of-the-art data compression for industrial grid deployments.

“Data compression technology we developed is now used by most of the automotive companies in Germany and is going to be used by 30 percent of the automobile companies worldwide – so it is already a mature product. And meta-modelling has become a standard technology inside BAE Systems for numerical optimisation,” explains Clemens-August Thole, Fraunhofer SCAI, SIMDAT project coordinator.

Weather without borders

One of SIMDAT’s most advanced commercialisation initiatives is VGISC (pronounced Vegis), the Virtual Global Information System Centre. “It is now deployed at 11 met centres worldwide and it is a prototype for a standard to be proposed by the World Meterological Organisation (WMO),” Thole states.

Weather does not recognise frontiers, and while national organisations can easily access weather data within their territory, analysing border regions is a lot more difficult.

Currently, meteorologists and climate researchers must use different tools for data from different national weather centres. VGISC overcomes that problem by leaving all the management, conversion and delivery of data to the SIMDAT portfolio. The SIMDAT solution also provides analysis tools.

SIMDAT is partnered with weather centres in the UK, Germany and France, but VGISC implements part of the WMO’s World Information System (WIS). “SIMDAT project is the first and only prototype for a WIS implementation. Ultimately, all the met centres worldwide would adapt this software,” explains Thole. “That’s the plan.”

Scientists will be able to access data from anywhere in the world through their web browser. This will be a huge achievement, involving petabytes of information in one of the most complex scientific fields, involving observations, simulations, analysis and prediction.

Setting the standards

SIMDAT is not only a commercial success, it is important in the world of standards, working with the Web Services Resource Framework (WSRF), the Open Grid Forum and W3C (World Wide Web Consortium), and has been active in Global Information Systems via its work with the WMO.

SIMDAT is a vast project. “You have some results already available as... commercial products (more are to come within the next two years), and then there are also some basic research results, which are more ideas, shown in some prototypes. [These] might turn into commercial solutions, but then again might not,” Thole notes.

The upshot, though, is that SIMDAT has already brought commercial solutions to industry, and helped to set the standards for the technology. The project’s impact will be felt for a long time.

The SIMDAT project received funding from the ICT strand of the Sixth Framework Programme for research.

This is the third and last part of a three-part series on SIMDAT.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>