Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poor-man’s supercomputing goes commercial

19.12.2008
Grid computing technology has long been the darling of cash-strapped academics in desperate need of raw processing power. Now a groundbreaking European research effort has created an industrial-strength platform already appearing in commercial applications.

The SIMDAT project has created a portfolio of tools and services that can finally bring the power of grid computing to industrial applications. Grids capture all the resources of connected computers, from storage to computation.

But up to now grids mostly languished in research labs, where they were used to provide massive processing power or to enable large-scale database management. SIMDAT developed essential business functions for grids, like industrial strength service-level agreements, management and security.

It will mean the advent of virtual organisations, a long-unfulfilled promise of information technology. Grids for business have huge applications in product development, both for data crunching and collaboration, and this was the focus of SIMDAT’s work in the automotive, pharmaceutical, aerospace and weather sectors.

But that is the just the beginning, and the ground broken by SIMDAT will prove a fertile field for grid technology over the next decade. Their work and solutions are relevant to other commercial areas and other industrial sectors. SIMDAT partners are already looking at the potential of adapting their work to new industrial sectors, like shipping and media production.

The commercialisation efforts are already well underway and began months before SIMDAT completed the EU-funded part of its work. Elements of SIMDAT’s wide-ranging research are already appearing in commercial applications.

Compressed data

Take data compression, for example, one small aspect of SIMDAT’s vast research and development programme. SIMDAT made three improvements related to data compression. Large data transfers – typical in grid applications – are now more efficient.

First, it boosted basic compression by a factor of 10, a huge achievement in itself. Second, it developed meta-models. By looking at a series of related datasets, computer scientists found that it was possible to ‘summarise’ their results in a meta-model, and this meta-model provided an accurate analysis of the whole dataset. So data could be exchanged as a meta-model and still be accurate.

The third improvement means it is now possible to make complex queries within summaries (such as why did the behaviour change, or what caused a fault?). By combining these achievements, SIMDAT developed state-of-the-art data compression for industrial grid deployments.

“Data compression technology we developed is now used by most of the automotive companies in Germany and is going to be used by 30 percent of the automobile companies worldwide – so it is already a mature product. And meta-modelling has become a standard technology inside BAE Systems for numerical optimisation,” explains Clemens-August Thole, Fraunhofer SCAI, SIMDAT project coordinator.

Weather without borders

One of SIMDAT’s most advanced commercialisation initiatives is VGISC (pronounced Vegis), the Virtual Global Information System Centre. “It is now deployed at 11 met centres worldwide and it is a prototype for a standard to be proposed by the World Meterological Organisation (WMO),” Thole states.

Weather does not recognise frontiers, and while national organisations can easily access weather data within their territory, analysing border regions is a lot more difficult.

Currently, meteorologists and climate researchers must use different tools for data from different national weather centres. VGISC overcomes that problem by leaving all the management, conversion and delivery of data to the SIMDAT portfolio. The SIMDAT solution also provides analysis tools.

SIMDAT is partnered with weather centres in the UK, Germany and France, but VGISC implements part of the WMO’s World Information System (WIS). “SIMDAT project is the first and only prototype for a WIS implementation. Ultimately, all the met centres worldwide would adapt this software,” explains Thole. “That’s the plan.”

Scientists will be able to access data from anywhere in the world through their web browser. This will be a huge achievement, involving petabytes of information in one of the most complex scientific fields, involving observations, simulations, analysis and prediction.

Setting the standards

SIMDAT is not only a commercial success, it is important in the world of standards, working with the Web Services Resource Framework (WSRF), the Open Grid Forum and W3C (World Wide Web Consortium), and has been active in Global Information Systems via its work with the WMO.

SIMDAT is a vast project. “You have some results already available as... commercial products (more are to come within the next two years), and then there are also some basic research results, which are more ideas, shown in some prototypes. [These] might turn into commercial solutions, but then again might not,” Thole notes.

The upshot, though, is that SIMDAT has already brought commercial solutions to industry, and helped to set the standards for the technology. The project’s impact will be felt for a long time.

The SIMDAT project received funding from the ICT strand of the Sixth Framework Programme for research.

This is the third and last part of a three-part series on SIMDAT.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>