Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU engineering researchers put fibre optics to good use

21.10.2009
The Specialty Optical Fibre Fabrication Laboratory houses a state-of-the-art fibre drawing tower capable of pulling the newest type of optical fibres called micro-structured fibres. This cutting-edge fibre manufacturing technology would allow PolyU researchers to develop novel optical fibres for communication and sensing applications.

The Hong Kong Polytechnic University (PolyU)'s Faculty of Engineering (FENG) has recently set up a Specialty Optical Fibre Fabrication Laboratory in its Department of Electronic and Information Engineering and Department of Electrical Engineering to support research work in optical fibre communications and other application areas. The Laboratory houses a state-of-the-art fibre drawing tower which is capable of pulling the newest type of optical fibres called micro-structured fibres.

Prof. Alex Wai, Dean of FENG and Chair Professor of Optical Communications, said that conventional optical fibres that are used today have a solid core and cladding. Micro-structured optical fibres on the other hand have air holes running along its length. Different arrangement and sizes of the air holes will result in optical fibres with different properties. He said that this cutting-edge fibre manufacturing technology would allow PolyU researchers to develop novel optical fibres for communication and sensing applications. The new fibre drawing facility, together with the existing Optical Communications and Networking Research Laboratory, will provide a strong base to support further research on optic fibres.

Prof. Wai also congratulated Prof. Charles Kao for winning the Nobel Prize in Physics for his "ground-breaking achievements concerning transmission of light in fibres for optical communications". A researcher with more than 20 years of experience in the field, Prof. Wai is pleased to note that the discovery of fibre optics has revolutionized modern communication and at the same time also led to many other innovations of relevance to our daily life.

He commented that the development of optical fibre communications has advanced by leaps and bounces in the past four decades since Prof. Charles Kao's insight in using glass fibres for optical communications. He cited the example of the development of the next generation high capacity optical communication networks with Huawei Technologies, the leading communication equipment company in the world, by Prof. Lu Chao of Department of Electronic and Information Engineering and his colleagues. The experimental network is capable of a transmission rate of 100 gigabits per second to a distance of more than 1,500 km.

Prof. Wai also cited other recent examples to illustrate the novel uses of fibre optics by PolyU researchers. The University's Smart Railway Research Laboratory, which was jointly set up by PolyU and the then KCRC in 2004 to enhance the operation and safety of railways, also thrives on fibre optic sensor technologies developed by Prof. Tam Hwa-yaw of the Department of Electrical Engineering. Prof. Tam and his colleague Prof. Ho Siu-lau have been working closely with MTR to develop a novel "Fibre Optic Sensor System" for monitoring the train conditions and track activities. They also supported the installation of the system along the East Rail and West Rail for monitoring the "health and safety" of its tracks and trains. Similar monitoring systems will be installed in the Airport Express Line and the Light Rail soon.

With concerted efforts of PolyU researchers from various disciplines, the use of fibre optics has been extended to the field of construction. Led by Dr Ni Yi-qing of the Department of Civil and Structural Engineering, the team has integrated the use of fibre optics and other advanced technologies to develop the "Mega-Structure Diagnostic and Prognostic System". Not only does the System allow early identification of structural deterioration and damage for avoiding catastrophic structural failure, it also enables the assessment of structural safety after disasters. It can be applied to mega-structures like high-rise buildings and long-span bridges, and is being used for the construction of Guangzhou New TV Tower - the highest TV Tower in the world.

The University is also actively exploring collaboration opportunities with state authorities and other research institutions for further use of fibre optics-based advanced technology.

Evelyn Chan | Research asia research news
Further information:
http://www.researchsea.com
http://www.polyu.edu.hk/cpa/polyu/hotnews/details_e.php?year=2009&news_id=1700

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>