Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plucked from thin air: New musical glove brings a whole new meaning to playing the computer

14.04.2010
Nimble fingers glide over invisible strings while the sound of a guitar blasts from the speakers. It might look like just another air guitar routine, but here the sounds really do seem to have been plucked from thin air.

The technology behind this astonishing feat is a novel musical glove that transmits signals to a computer when the fingers of the glove are moved. But the glove can do more than just recreate guitar and piano sounds. The sensitive control system could find future use in robots and computer games. Scientists from Saarland University will be showcasing their invention at Hannover Industrial Trade Fair from 19-23 April (Hall 2, Stand C 44).

The musical glove is fitted with magnetic and acceleration sensors and is able to measure the motion of the hand and the individual fingers. "We don't just record where a particular finger is at any one moment and how it is bent, we can also continuously measure the position of the entire hand", says Esther Tesfagiorgis, part of the team of mechatronics students at Saarland University that developed the musical glove.

A computer program then translates the motions of the hand into musical notes. So far the glove has been programmed to simulate guitar and piano sounds. The orientation of the left hand determines which of the instruments is to be simulated. If the left hand moves horizontally, palm downward, the glove simulates a piano, if the left hand is rotated through 180° to leave the palm uppermost, the glove switches into guitar mode.

"But the sensitivity of the control system means that there are many of other potential applications. For instance, the system could be used to record sign language or to manually control computer games or robots," explains Esther Tesfagiorgis, whose team has filed an application to patent the invention. The sensor-controlled glove could also be used for the kind of delicate hand movements required in surgical operations. The glove is fitted with an acceleration sensor on one side of the hand and with permanent magnets on the palm of the hand that generate a magnetic field. So-called magnetoresistive sensors are located on one side of the first section of each finger. "When the hand moves, the magnetic field changes. This change in the magnetic field is registered by the sensors and transformed into an electric voltage. These voltages are then recorded by a device and processed in the computer as a signal," explains Tesfagiorgis.

The team of four mechatronic students from Saarbrücken entered their invention for the nationwide Cosima competition (Contest of Students in Microsystem Applications) at last year's Microsystems Technology Congress in Berlin and won first prize. Winning the Cosima contest automatically qualified the group for the international student competition i-Can that was held in January 2010 in Xiamen, China, where competing against 17 other student groups from six countries, the Saarbrücken team once again came out on top.

Questions can be addressed to:

Prof. Dr. Hartmut Seidel
Lehrstuhl für Mikromechanik
Universität des Saarlandes
Phone: +49 (0)681 302-4416
E-mail: seidel@lmm.uni-saarland.de
Esther Tesfagiorgis
Tel. +49 (0)511 8949-7101 (during trade fair)
Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using ISDN codec technology. Interview requests should be addressed to the university's Press and Public Relations Office (+49 (0)681 302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.lmm.uni-saarland.de
http://www.uni-saarland.de/pressefotos

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>