Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plucked from thin air: New musical glove brings a whole new meaning to playing the computer

14.04.2010
Nimble fingers glide over invisible strings while the sound of a guitar blasts from the speakers. It might look like just another air guitar routine, but here the sounds really do seem to have been plucked from thin air.

The technology behind this astonishing feat is a novel musical glove that transmits signals to a computer when the fingers of the glove are moved. But the glove can do more than just recreate guitar and piano sounds. The sensitive control system could find future use in robots and computer games. Scientists from Saarland University will be showcasing their invention at Hannover Industrial Trade Fair from 19-23 April (Hall 2, Stand C 44).

The musical glove is fitted with magnetic and acceleration sensors and is able to measure the motion of the hand and the individual fingers. "We don't just record where a particular finger is at any one moment and how it is bent, we can also continuously measure the position of the entire hand", says Esther Tesfagiorgis, part of the team of mechatronics students at Saarland University that developed the musical glove.

A computer program then translates the motions of the hand into musical notes. So far the glove has been programmed to simulate guitar and piano sounds. The orientation of the left hand determines which of the instruments is to be simulated. If the left hand moves horizontally, palm downward, the glove simulates a piano, if the left hand is rotated through 180° to leave the palm uppermost, the glove switches into guitar mode.

"But the sensitivity of the control system means that there are many of other potential applications. For instance, the system could be used to record sign language or to manually control computer games or robots," explains Esther Tesfagiorgis, whose team has filed an application to patent the invention. The sensor-controlled glove could also be used for the kind of delicate hand movements required in surgical operations. The glove is fitted with an acceleration sensor on one side of the hand and with permanent magnets on the palm of the hand that generate a magnetic field. So-called magnetoresistive sensors are located on one side of the first section of each finger. "When the hand moves, the magnetic field changes. This change in the magnetic field is registered by the sensors and transformed into an electric voltage. These voltages are then recorded by a device and processed in the computer as a signal," explains Tesfagiorgis.

The team of four mechatronic students from Saarbrücken entered their invention for the nationwide Cosima competition (Contest of Students in Microsystem Applications) at last year's Microsystems Technology Congress in Berlin and won first prize. Winning the Cosima contest automatically qualified the group for the international student competition i-Can that was held in January 2010 in Xiamen, China, where competing against 17 other student groups from six countries, the Saarbrücken team once again came out on top.

Questions can be addressed to:

Prof. Dr. Hartmut Seidel
Lehrstuhl für Mikromechanik
Universität des Saarlandes
Phone: +49 (0)681 302-4416
E-mail: seidel@lmm.uni-saarland.de
Esther Tesfagiorgis
Tel. +49 (0)511 8949-7101 (during trade fair)
Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using ISDN codec technology. Interview requests should be addressed to the university's Press and Public Relations Office (+49 (0)681 302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.lmm.uni-saarland.de
http://www.uni-saarland.de/pressefotos

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>