Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plucked from thin air: New musical glove brings a whole new meaning to playing the computer

Nimble fingers glide over invisible strings while the sound of a guitar blasts from the speakers. It might look like just another air guitar routine, but here the sounds really do seem to have been plucked from thin air.

The technology behind this astonishing feat is a novel musical glove that transmits signals to a computer when the fingers of the glove are moved. But the glove can do more than just recreate guitar and piano sounds. The sensitive control system could find future use in robots and computer games. Scientists from Saarland University will be showcasing their invention at Hannover Industrial Trade Fair from 19-23 April (Hall 2, Stand C 44).

The musical glove is fitted with magnetic and acceleration sensors and is able to measure the motion of the hand and the individual fingers. "We don't just record where a particular finger is at any one moment and how it is bent, we can also continuously measure the position of the entire hand", says Esther Tesfagiorgis, part of the team of mechatronics students at Saarland University that developed the musical glove.

A computer program then translates the motions of the hand into musical notes. So far the glove has been programmed to simulate guitar and piano sounds. The orientation of the left hand determines which of the instruments is to be simulated. If the left hand moves horizontally, palm downward, the glove simulates a piano, if the left hand is rotated through 180° to leave the palm uppermost, the glove switches into guitar mode.

"But the sensitivity of the control system means that there are many of other potential applications. For instance, the system could be used to record sign language or to manually control computer games or robots," explains Esther Tesfagiorgis, whose team has filed an application to patent the invention. The sensor-controlled glove could also be used for the kind of delicate hand movements required in surgical operations. The glove is fitted with an acceleration sensor on one side of the hand and with permanent magnets on the palm of the hand that generate a magnetic field. So-called magnetoresistive sensors are located on one side of the first section of each finger. "When the hand moves, the magnetic field changes. This change in the magnetic field is registered by the sensors and transformed into an electric voltage. These voltages are then recorded by a device and processed in the computer as a signal," explains Tesfagiorgis.

The team of four mechatronic students from Saarbrücken entered their invention for the nationwide Cosima competition (Contest of Students in Microsystem Applications) at last year's Microsystems Technology Congress in Berlin and won first prize. Winning the Cosima contest automatically qualified the group for the international student competition i-Can that was held in January 2010 in Xiamen, China, where competing against 17 other student groups from six countries, the Saarbrücken team once again came out on top.

Questions can be addressed to:

Prof. Dr. Hartmut Seidel
Lehrstuhl für Mikromechanik
Universität des Saarlandes
Phone: +49 (0)681 302-4416
Esther Tesfagiorgis
Tel. +49 (0)511 8949-7101 (during trade fair)
Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using ISDN codec technology. Interview requests should be addressed to the university's Press and Public Relations Office (+49 (0)681 302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>