Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: Model makes light work of nanocircuits

14.03.2013
A numerical simulation predicts the behavior of a component that controls light for faster computing
As computer manufacturers cram ever more processing power onto tiny chips, they face a growing problem. The connections between electronic components that measure just a few billionths of a meter across allow electrons to leak, which reduces the quality of the signal they carry, wastes energy and causes devices to overheat.

One promising solution is to replace those electrons with photons of light. Hong-Son Chu and Er-Ping Li of the A*STAR Institute of High Performance Computing in Singapore and co-workers have now developed a numerical model to simulate the performance of circuits that rely on light, which could be an invaluable tool for designers in the burgeoning field of nanophotonics.

Devices that manipulate photons of light are typically many times larger than conventional circuit components, and this limits their use. In contrast, “plasmonic technology promises to overcome the size mismatch between microscale photonics and nanoscale electronics,” says Li.

When light hits the interface between a metal and a dielectric insulator, it creates ripples in the density of the electric charge. These ripples, known as plasmons, are bound to the electromagnetic field of the incoming light, and travel along the interface. The plasmons have a shorter wavelength than the light, so the components that guide and manipulate them can be smaller than those used to control light directly. “This emergent technology is a potential platform for the next generation of optical interconnects that enables the deployment of small-footprint and low-energy integrated circuitry,” says Chu.

Microelectronics researchers have previously relied on time-consuming and expensive computer simulations to fine-tune the designs of their plasmonic nanocircuits. Li’s team has developed a much simpler model that includes a library of different plasmonic components such as waveguides, modulators and photodetectors, and can integrate their properties to predict how the whole system will behave.

Li and his co-workers used their model to quickly design and improve a compact Mach–Zehnder plasmonic modulator, a commonly used component that enables an electrical signal to control a beam of light. The device relies on an electro-optic material whose refractive index changes when a voltage is applied.

The simulation showed how the size and shape of the device could be optimized to lower its operating voltage, as well as increasing the difference between its two switching states to reduce signal noise.

The researchers now plan to improve their design software so that it includes many more properties of nanocircuits, “including mechanical, thermal, optical and electrical characteristics,” says Chu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Chu, H.-S., Kurniawan, O., Zhang, W.-Z., Li, D. & Li, E.-P. Integrated system-level electronic design automation (EDA) for designing plasmonic nanocircuits. IEEE Transactions on Nanotechnology 11, 731–738 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>