Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photonics: Bright prospects

A silicon chip with integrated laser and optical grating offers new possibilities for telecommunications

Silicon is an ideal platform for integrated photonic circuits because the material is cheap and readily available. Silicon chips with an integrated laser source capable of emitting light at a specific wavelength are particularly useful in telecommunications.

Unfortunately, silicon is a material with high optical loss, which often degrades the output power and performance of the laser source. Yongqiang Wei at the A*STAR Data Storage Institute and co-workers1 have now fabricated a silicon chip that integrates not only a laser, but also an optical grating that provides optical gain and ensures that the laser outputs light at wavelengths near 1,550 nm—the standard operating wavelength for telecommunications devices.

The transmission of large amounts of data through an optical fiber is based on laser beams of different wavelengths that are sent through the fiber all at the same time. For such multi-channel operation, however, the lasers need to be tuned to precise wavelengths to avoid cross-talk. This can be achieved with an optical grating.

So far, integrating a laser and an optical grating into a silicon chip has been challenging. The laser is typically made from several thin layers of different semiconductor materials, while the optical grating itself is etched out of silicon. Everything has to be precisely aligned, and the conventional way to achieve this is to grow the laser on a separate semiconductor chip. “The whole process takes more than 50 steps and requires the surface roughness of the silicon wafer to be extremely low, less than 0.3 nanometers,” says Wei.

In the new device, a light source is placed between a mirror and a curved optical grating (pictured). The grating acts like a selective mirror that only reflects light at a specific wavelength back into the laser. This creates an optical cavity that only allows lasing action at a specific wavelength, providing the precision necessary for telecommunications applications. The researchers tested their device and found that it has good performance, emitting light with optical power of 2.3 milliwatts—about the same power as a laser pointer—at a highly specific wavelength.

“The integration of multiple lasers and optical gratings on a single chip will be our next challenge,” says Wei. “Also, for practical applications, we plan to scale up our single-wavelength lasers by utilizing the same grating structure for a broader range of wavelengths in order to integrate multiple light sources on the chip.” The new device marks a major step toward the realization of commercial telecommunications devices integrated on a single silicon chip.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Wang, Y. et al. Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits. Optics Express 19, 2006–2013 (2011).

Lee Swee Heng | Research asia research news
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>