Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Bright prospects

09.08.2011
A silicon chip with integrated laser and optical grating offers new possibilities for telecommunications

Silicon is an ideal platform for integrated photonic circuits because the material is cheap and readily available. Silicon chips with an integrated laser source capable of emitting light at a specific wavelength are particularly useful in telecommunications.

Unfortunately, silicon is a material with high optical loss, which often degrades the output power and performance of the laser source. Yongqiang Wei at the A*STAR Data Storage Institute and co-workers1 have now fabricated a silicon chip that integrates not only a laser, but also an optical grating that provides optical gain and ensures that the laser outputs light at wavelengths near 1,550 nm—the standard operating wavelength for telecommunications devices.

The transmission of large amounts of data through an optical fiber is based on laser beams of different wavelengths that are sent through the fiber all at the same time. For such multi-channel operation, however, the lasers need to be tuned to precise wavelengths to avoid cross-talk. This can be achieved with an optical grating.

So far, integrating a laser and an optical grating into a silicon chip has been challenging. The laser is typically made from several thin layers of different semiconductor materials, while the optical grating itself is etched out of silicon. Everything has to be precisely aligned, and the conventional way to achieve this is to grow the laser on a separate semiconductor chip. “The whole process takes more than 50 steps and requires the surface roughness of the silicon wafer to be extremely low, less than 0.3 nanometers,” says Wei.

In the new device, a light source is placed between a mirror and a curved optical grating (pictured). The grating acts like a selective mirror that only reflects light at a specific wavelength back into the laser. This creates an optical cavity that only allows lasing action at a specific wavelength, providing the precision necessary for telecommunications applications. The researchers tested their device and found that it has good performance, emitting light with optical power of 2.3 milliwatts—about the same power as a laser pointer—at a highly specific wavelength.

“The integration of multiple lasers and optical gratings on a single chip will be our next challenge,” says Wei. “Also, for practical applications, we plan to scale up our single-wavelength lasers by utilizing the same grating structure for a broader range of wavelengths in order to integrate multiple light sources on the chip.” The new device marks a major step toward the realization of commercial telecommunications devices integrated on a single silicon chip.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References
Wang, Y. et al. Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits. Optics Express 19, 2006–2013 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>