Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pervasive Computing: the Road to Middleware

20.01.2009
In the business world, computers and the Internet have reduced the need for intermediaries – the so-called “middlemen” that once was so important for making travel plans, purchasing insurance or buying stock.

In one field of computer research, however, the quest is on to create just such an intermediary to connect a flood of computerized devices with vast networks of data.

Dr. Ali Hurson is among those researchers searching for a “middleware” solution that will make current and future gadgets more useful by connecting them with larger networks.

“Pervasive computing means making computing more involved in the daily life of humans, but in a graceful rather than disruptive fashion,” says Hurson, professor and chair of computer science at Missouri University of Science and Technology.

Middleware is the software glue that could connect a wide array of personal devices – from mobile devices to the on-board navigation systems of automobiles – to various networks. Middleware operating with a vehicle’s navigation system could interact with other data systems to let drivers know of nearby filling stations when their cars are low on gas, or communicate with a traffic-control network to suggest alternative routes around traffic jams.

One of Hurson’s latest projects involves designing a more secure system of computers and sensors to improve airport security. His idea of a “pervasively secure infrastructure” for airports – a network of mobile and stationary sensors, cameras and other wired and wireless gadgets that can detect everything from chemical residue on clothing to unusual movements of individuals in the concourses – is one example of how pervasive computing could potentially reduce the risk of terrorist attacks.

Funded by the National Science Foundation, Hurson’s research on airport security envisions an environment in which various sensors – cameras, chemical-sniffing devices, motion sensors – connect into a middleware application that in turn connects to the databases and information networks of law enforcement agencies, such as the FBI, the National Security Administration and local police. Much like a middleware agent connecting a driver’s navigation system with traffic-control networks can inform drivers of road construction ahead, Hurson’s airport middleware agent would notify law enforcement of any suspicious behavior in or around an airport.

The middleware would be “running the show” for airport security, helping airport security and police better determine “what is going to help them fulfill their tasks better,” Hurson says.

The middleware concept is still mainly theoretical, but Hurson sees a great future ahead for pervasive computing. For the airport problem, developing a middleware that can act as a go-between for myriad computer networks – and do so securely – is the trick.

Many types of sensors are now designed with the flexibility to adapt them to different uses, Hurson says. Existing sensors that were designed for one specific purpose – to tell you when it’s time for an oil change, to use the car example – could be reprogrammed to perform another task, such as detecting excess heat in the engine. Computer scientists could even create software agents – a sort of benign computer virus – to spread throughout a network and remotely reprogram nodes in one fell swoop.

“These networks have been created in isolation,” Hurson says. “Now we want to establish interoperability to serve future applications.”

Hurson is also interested in creating networks of sensors, each designed for a specific application, to handle a sophisticated network such as an airport security system.

Hurson, who joined Missouri S&T as chair of computer science in January 2008, wants to establish a pervasive computing laboratory at S&T to further this research emphasis.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>