Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pervasive Computing: the Road to Middleware

20.01.2009
In the business world, computers and the Internet have reduced the need for intermediaries – the so-called “middlemen” that once was so important for making travel plans, purchasing insurance or buying stock.

In one field of computer research, however, the quest is on to create just such an intermediary to connect a flood of computerized devices with vast networks of data.

Dr. Ali Hurson is among those researchers searching for a “middleware” solution that will make current and future gadgets more useful by connecting them with larger networks.

“Pervasive computing means making computing more involved in the daily life of humans, but in a graceful rather than disruptive fashion,” says Hurson, professor and chair of computer science at Missouri University of Science and Technology.

Middleware is the software glue that could connect a wide array of personal devices – from mobile devices to the on-board navigation systems of automobiles – to various networks. Middleware operating with a vehicle’s navigation system could interact with other data systems to let drivers know of nearby filling stations when their cars are low on gas, or communicate with a traffic-control network to suggest alternative routes around traffic jams.

One of Hurson’s latest projects involves designing a more secure system of computers and sensors to improve airport security. His idea of a “pervasively secure infrastructure” for airports – a network of mobile and stationary sensors, cameras and other wired and wireless gadgets that can detect everything from chemical residue on clothing to unusual movements of individuals in the concourses – is one example of how pervasive computing could potentially reduce the risk of terrorist attacks.

Funded by the National Science Foundation, Hurson’s research on airport security envisions an environment in which various sensors – cameras, chemical-sniffing devices, motion sensors – connect into a middleware application that in turn connects to the databases and information networks of law enforcement agencies, such as the FBI, the National Security Administration and local police. Much like a middleware agent connecting a driver’s navigation system with traffic-control networks can inform drivers of road construction ahead, Hurson’s airport middleware agent would notify law enforcement of any suspicious behavior in or around an airport.

The middleware would be “running the show” for airport security, helping airport security and police better determine “what is going to help them fulfill their tasks better,” Hurson says.

The middleware concept is still mainly theoretical, but Hurson sees a great future ahead for pervasive computing. For the airport problem, developing a middleware that can act as a go-between for myriad computer networks – and do so securely – is the trick.

Many types of sensors are now designed with the flexibility to adapt them to different uses, Hurson says. Existing sensors that were designed for one specific purpose – to tell you when it’s time for an oil change, to use the car example – could be reprogrammed to perform another task, such as detecting excess heat in the engine. Computer scientists could even create software agents – a sort of benign computer virus – to spread throughout a network and remotely reprogram nodes in one fell swoop.

“These networks have been created in isolation,” Hurson says. “Now we want to establish interoperability to serve future applications.”

Hurson is also interested in creating networks of sensors, each designed for a specific application, to handle a sophisticated network such as an airport security system.

Hurson, who joined Missouri S&T as chair of computer science in January 2008, wants to establish a pervasive computing laboratory at S&T to further this research emphasis.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>