Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Personal Touch Signature Makes Mobile Devices More Secure

08.04.2014

New system provides security by monitoring how user touches the screen

Passwords, gestures and fingerprint scans are all helpful ways to keep a thief from unlocking and using a cell phone or tablet. Cybersecurity researchers from the Georgia Institute of Technology have gone a step further.


LatentGesture

LatentGesture continuously monitors how a user taps and swipes a mobile device. If the movements don’t match the owner’s tendencies, the system recognizes the differences and can be programmed to lock the device.

They’ve developed a new security system that continuously monitors how a user taps and swipes a mobile device. If the movements don’t match the owner’s tendencies, the system recognizes the differences and can be programmed to lock the device. 

The new system is called LatentGesture and was used during a Georgia Tech lab study using Android devices. The system was nearly 98 percent accurate on a smartphone and 97 percent correct on tablets. The research team will present the findings for the first time at the end of April. 

“The system learns a person’s ‘touch signature,’ then constantly compares it to how the current user is interacting with the device,” said Polo Chau, a Georgia Tech College of Computing assistant professor who led the study.

To test the system, Chau and his team set up an electronic form with a list of tasks for 20 participants. They were asked to tap buttons, check boxes and swipe slider bars on a phone and tablet to fill out the form. The system tracked their tendencies and created a profile for each person.

After profiles were stored, the researchers designated one person’s signature as the “owner” of the device and repeated the tests. LatentGesture successfully matched the owner and flagged everyone else as unauthorized users.  

“Just like your fingerprint, everyone is unique when they use a touchscreen,” said Chau. “Some people slide the bar with one quick swipe. Others gradually move it across the screen. Everyone taps the screen with different pressures while checking boxes.”

The research team also programmed the system to store five touch signatures on the same device – one “owner” and four authorized users. When someone other than the owner used the tablet, the system identified each with 98 percent accuracy. 

“This feature could be used when a child uses her dad’s tablet,” said College of Computing sophomore Premkumar Saravanan. “The system would recognize her touch signature and allow her to use the device. But if she tried to buy an app, the system could prevent it.”

The researchers say LatentGesture’s biggest advantage is that the system is constantly running in the background. The user doesn’t have to do anything different for added security and authentication.

“It’s pretty easy for someone to look over your shoulder while you’re unlocking your phone and see your password,” said Samuel Clarke, another College of Computing student on the research team. “This system ensures security even if someone takes your phone or tablet and starts using it.”

Chau is co-advising the project with Hongyuan Zha, a professor in the School of Computational Science and Engineering. The study will be presented in Toronto at ACM Chinese CHI 2014 from April 26 to 27.

This research was partially supported by the National Science Foundation (NSF) under grants IIS-1049694 and IIS-1116886. Any conclusions expressed are those of the principal investigator and may not necessarily represent the official views of the NSF.

Jason Maderer | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: CHI Computing Devices Engineering NSF Secure Signature differences

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>