Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Personal Touch Signature Makes Mobile Devices More Secure

08.04.2014

New system provides security by monitoring how user touches the screen

Passwords, gestures and fingerprint scans are all helpful ways to keep a thief from unlocking and using a cell phone or tablet. Cybersecurity researchers from the Georgia Institute of Technology have gone a step further.


LatentGesture

LatentGesture continuously monitors how a user taps and swipes a mobile device. If the movements don’t match the owner’s tendencies, the system recognizes the differences and can be programmed to lock the device.

They’ve developed a new security system that continuously monitors how a user taps and swipes a mobile device. If the movements don’t match the owner’s tendencies, the system recognizes the differences and can be programmed to lock the device. 

The new system is called LatentGesture and was used during a Georgia Tech lab study using Android devices. The system was nearly 98 percent accurate on a smartphone and 97 percent correct on tablets. The research team will present the findings for the first time at the end of April. 

“The system learns a person’s ‘touch signature,’ then constantly compares it to how the current user is interacting with the device,” said Polo Chau, a Georgia Tech College of Computing assistant professor who led the study.

To test the system, Chau and his team set up an electronic form with a list of tasks for 20 participants. They were asked to tap buttons, check boxes and swipe slider bars on a phone and tablet to fill out the form. The system tracked their tendencies and created a profile for each person.

After profiles were stored, the researchers designated one person’s signature as the “owner” of the device and repeated the tests. LatentGesture successfully matched the owner and flagged everyone else as unauthorized users.  

“Just like your fingerprint, everyone is unique when they use a touchscreen,” said Chau. “Some people slide the bar with one quick swipe. Others gradually move it across the screen. Everyone taps the screen with different pressures while checking boxes.”

The research team also programmed the system to store five touch signatures on the same device – one “owner” and four authorized users. When someone other than the owner used the tablet, the system identified each with 98 percent accuracy. 

“This feature could be used when a child uses her dad’s tablet,” said College of Computing sophomore Premkumar Saravanan. “The system would recognize her touch signature and allow her to use the device. But if she tried to buy an app, the system could prevent it.”

The researchers say LatentGesture’s biggest advantage is that the system is constantly running in the background. The user doesn’t have to do anything different for added security and authentication.

“It’s pretty easy for someone to look over your shoulder while you’re unlocking your phone and see your password,” said Samuel Clarke, another College of Computing student on the research team. “This system ensures security even if someone takes your phone or tablet and starts using it.”

Chau is co-advising the project with Hongyuan Zha, a professor in the School of Computational Science and Engineering. The study will be presented in Toronto at ACM Chinese CHI 2014 from April 26 to 27.

This research was partially supported by the National Science Foundation (NSF) under grants IIS-1049694 and IIS-1116886. Any conclusions expressed are those of the principal investigator and may not necessarily represent the official views of the NSF.

Jason Maderer | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: CHI Computing Devices Engineering NSF Secure Signature differences

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>