Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The perfect clone: RUB researchers hack RFID smartcards

03.11.2011
Extracting key from electro-magnetic emanations

Professional safecrackers use a stethoscope to find the correct combination by listening to the clicks of the lock. Researchers at the Ruhr-University Bochum have now demonstrated how to bypass the security mechanisms of a widely used contactless smartcard in a similar way. Employing so-called “Side-Channel Analysis” the researchers of the Chair for Embedded Security (Prof. Dr.-Ing. Christof Paar) can break the cryptography of millions of cards that are used all around the world.


Measuring the electro-magnetic field

Mathematically secure

RFID smartcards (Radio Frequency Identification) of the type DESFire MF3ICD40 are widely employed in payment and access control systems. The security of these cards is based on Triple-DES, a cipher that is unbreakable from a purely mathematic point of view. DESFire cards are for instance used by the public transport agencies in Melbourne, San Francisco and Prague. The DESFire MF3ICD40 is manufactured by NXP, the former semiconductor division of Philips Electronics.

Fluctuations of the magnetic field

A person is identified as a passenger, employee or customer when his RFID smartcard is placed in the proximity of a reader. To guarantee the necessary level of security, a secret key is stored on the integrated chip inside the card. But just like for the safe, the security mechanism produces the electronic equivalent of the clicks of a mechanic lock. “We measured the power consumption of the chip during the encryption and decryption with a small probe”, says David Oswald. The fluctuations of the electro-magnetic field allow the researchers to conclude to the full 112-bit secret key of the smartcard.

Low cost, big damage

Having extracted the keys, an attacker can create an unlimited number of undetectable clones of a given card. The required time and effort are quite low: “For our measurements, we needed a DESFire MF3ICD40 card, an RFID reader, the probe and an oscilloscope to measure the power consumption”, says Oswald. This equipment only costs a few thousand euros. Having obtained knowledge on the characteristic properties of the smartcard, the attack takes three to seven hours. The manufacturer NXP confirmed the security hole in the meanwhile and recommends his customers to upgrade to a newer version of the card.

Insufficient countermeasures

Already back in 2008, researchers around Prof. Dr.-Ing. Christof Paar used Side-Channel Analysis to break supposedly secure systems. Three years ago, garage and car doors “mysteriously” opened for the researchers of the Chair for Embedded Security. The employed KeeLoq RFID system – which customers and manufacturers trusted blindly before – turned out to be highly susceptible to Side-Channel Analysis.

Further information

Prof. Dr.-Ing. Christof Paar, Chair for Embedded Security, Building ID 2/607, Tel. +49 234 32 22994, christof.paar@rub.de

Homepage: http://www.emsec.rub.de

Dr. Josef König | idw
Further information:
http://www.emsec.rub.de

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>