Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The perfect clone: RUB researchers hack RFID smartcards

03.11.2011
Extracting key from electro-magnetic emanations

Professional safecrackers use a stethoscope to find the correct combination by listening to the clicks of the lock. Researchers at the Ruhr-University Bochum have now demonstrated how to bypass the security mechanisms of a widely used contactless smartcard in a similar way. Employing so-called “Side-Channel Analysis” the researchers of the Chair for Embedded Security (Prof. Dr.-Ing. Christof Paar) can break the cryptography of millions of cards that are used all around the world.


Measuring the electro-magnetic field

Mathematically secure

RFID smartcards (Radio Frequency Identification) of the type DESFire MF3ICD40 are widely employed in payment and access control systems. The security of these cards is based on Triple-DES, a cipher that is unbreakable from a purely mathematic point of view. DESFire cards are for instance used by the public transport agencies in Melbourne, San Francisco and Prague. The DESFire MF3ICD40 is manufactured by NXP, the former semiconductor division of Philips Electronics.

Fluctuations of the magnetic field

A person is identified as a passenger, employee or customer when his RFID smartcard is placed in the proximity of a reader. To guarantee the necessary level of security, a secret key is stored on the integrated chip inside the card. But just like for the safe, the security mechanism produces the electronic equivalent of the clicks of a mechanic lock. “We measured the power consumption of the chip during the encryption and decryption with a small probe”, says David Oswald. The fluctuations of the electro-magnetic field allow the researchers to conclude to the full 112-bit secret key of the smartcard.

Low cost, big damage

Having extracted the keys, an attacker can create an unlimited number of undetectable clones of a given card. The required time and effort are quite low: “For our measurements, we needed a DESFire MF3ICD40 card, an RFID reader, the probe and an oscilloscope to measure the power consumption”, says Oswald. This equipment only costs a few thousand euros. Having obtained knowledge on the characteristic properties of the smartcard, the attack takes three to seven hours. The manufacturer NXP confirmed the security hole in the meanwhile and recommends his customers to upgrade to a newer version of the card.

Insufficient countermeasures

Already back in 2008, researchers around Prof. Dr.-Ing. Christof Paar used Side-Channel Analysis to break supposedly secure systems. Three years ago, garage and car doors “mysteriously” opened for the researchers of the Chair for Embedded Security. The employed KeeLoq RFID system – which customers and manufacturers trusted blindly before – turned out to be highly susceptible to Side-Channel Analysis.

Further information

Prof. Dr.-Ing. Christof Paar, Chair for Embedded Security, Building ID 2/607, Tel. +49 234 32 22994, christof.paar@rub.de

Homepage: http://www.emsec.rub.de

Dr. Josef König | idw
Further information:
http://www.emsec.rub.de

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>