Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pantograph Monitoring for the eHighway

13.01.2015

Siemens is developing an automatic monitoring system for pantographs.

Designed initially for electric and hybrid trucks on eHighways, the system uses cameras and sensors to check the condition of pantographs in order to prevent damage to the contact wire. Similar but more complex systems are occasionally used for electric trains.

The eHighway system is a low-emission solution that was developed by Siemens for heavily used truck shuttle routes. Electric or hybrid-drive trucks use pantographs to draw electric power from overhead conductors, which allows them to travel with practically no emissions.

On an eHighway, which will be used by vehicles with many different owners, monitoring the pantographs is especially important to prevent route closures that may become necessary because of damaged overhead conductors.

The eHighway solution is a compact and inexpensive system that can be installed at various points along the route and simultaneously detects whether the vehicles are authorized. Siemens introduced the solution recently at the Innotrans 2014 trade fair and demonstrated how it can be applied to electric trains.

Whether on a truck or train, the pantographs are subject to wear and tear during operation. The carbon contact strips, in particular, wear out through contact with the overhead wire. If worn-out or recently damaged contact strips are not detected in time, grooves, fractures, or uneven wear could lead to contact problems and thus to damage of the contact wire of the overhead conductor. In extreme cases, the overhead contact wire might even break.

Special cameras monitor the contacts

The system monitors the pantograph in two ways. Cameras monitor the carbon surfaces on the contact strip. Special algorithms evaluate the level of wear or incipient damage. As soon as enough measurement data is available from various systems, the solution will also try to predict when the carbon strips have to be replaced.

Maintenance is thus possible according to the state of wear, and the contact strips will be used for as long as possible. In addition, sensors register the vertical deflection of the overhead contact wire. From this, the pressure on the wire can be inferred. If the pantograph presses on the wire with too much force, there is excessive wear on the carbon layer as well as the overhead contact wire. If the pressure is too low, the contact could be broken, and arcing might occur, which also stresses both sides of the connection.

The system is designed in such a way that it can be installed at the poles of the overhead conductor as well as on bridges in order to take measurements at as many points as possible along the route. This makes it possible to draw additional inferences regarding the condition of the infrastructure - the suspension of the overhead contact wire, for instance. In the case of electric trains, the train stations or depot entrances are appropriate spots for measurements.

The condition of the pantograph is transmitted to the control centers, the maintenance engineers or to an onboard unit in the truck. Siemens is operating the monitoring system at its test facility for eHighways and is currently optimizing the automatic analysis, including the process for evaluating the contact strips, for instance. After that, a functional prototype is planned.

Weitere Informationen:

http://ww.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>