Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOES-P proceeds toward launch

28.01.2010
The latest Geostationary Operational Environmental Satellite, GOES-P is proceeding through more checks in preparation for its launch, which is no earlier than March 1.

The GOES-P spacecraft continues being processed at the Astrotech Facility in Titusville, Fla. The Imager, Sounder and Solar X-Ray Imager have completed cleaning and inspections. The optical port covers have been successfully installed. Those covers are one of the last mechanisms to be deployed once GOES-P gets into orbit.

GOES-P is the latest weather satellite developed by NASA to aid the nation's meteorologists and climate scientists. GOES satellites provide the familiar weather pictures seen on United States television newscasts every day. GOES provides nearly continuous imaging and sounding, which allows forecasters to better measure changes in atmospheric temperature and moisture distributions, which increase the accuracy of their forecasts. GOES environmental information is used for a host of applications, including weather monitoring and prediction models.

Along with the instruments GOES-P will carry, it also contains seven appendages and mechanisms that are stowed for launch and later deployed during transfer orbit or at various phases of on-orbit testing. Those deployable mechanisms and appendages are: Aft omni antenna; Deployable aft blanket (DAB); Solar array; X-ray positioner (XRP); Magnetometer boom; Instrument radiant cooler covers; and the optical port covers.

These seven mechanisms are put into operation after the Delta IV rocket deploys GOES-P into space. Here's the order of how they work: Shortly after separation from the launch vehicle on day one of Launch and Orbit Raising (LOR), the Aft omni and DAB are deployed. At about the twelfth day, once geosynchronous orbit is achieved, the solar array is deployed. The solar array powers GOES-P in orbit. At around day 13 or 14 the XRP is released, followed by the magnetometer boom. By around day 17 in orbit, the instrument optical port covers are deployed at the end of Bus In-Orbit Testing (IOT). Finally, after about 30 days in orbit the radiant cooler covers are deployed.

Two solid rocket boosters were installed on Jan. 15, 2010, on the Delta IV Launch Vehicle that will carry GOES-P into space. GOES-P was transferred to its fueling stand on Monday, January 18. The L-35 Countdown Launch Procedure (CLP) Rehearsal was successfully completed on January 19, and the next day, the Propulsion System Valve Driver Functional Testing was completed. Now, Propulsion System Pressurization and Leak Checks are in progress in preparation for fueling operations.

The Eastern Range has approved the GOES-P new launch date of March 1, 2010.

NASA contracted with Boeing to build and launch the GOES-P spacecraft. NASA's Launch Services Program at NASA's Kennedy Space Center in Florida supported the launch in an advisory role. The National Oceanic and Atmospheric Administration (NOAA) manages the GOES program, establishes requirements, provides all funding and distributes environmental satellite data for the United States. Goddard procures and manages the design, development and launch of the satellites for NOAA on a cost-reimbursable basis.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: GOES-P GOES-P spacecraft NOAA Propulsion Solar Decathlon

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>