OUCH! Computer system spots fake expressions of pain better than people

The researchers used the computer expression recognition toolbox (CERT), an end-to-end system for fully automated facial-expression recognition that operates in real time. UB's Mark Frank was one of CERT's developers.

A joint study by researchers at the University of California, San Diego, the University at Buffalo, and the University of Toronto has found that a computer–vision system can distinguish between real or faked expressions of pain more accurately than can humans.

This ability has obvious uses for uncovering pain malingering — fabricating or exaggerating the symptoms of pain for a variety of motives — but the system also could be used to detect deceptive actions in the realms of security, psychopathology, job screening, medicine and law. 

The study, “Automatic Decoding of Deceptive Pain Expressions,” is published in the latest issue of Current Biology.

The authors are Marian Bartlett, PhD, research professor, Institute for Neural Computation, University of California, San Diego; Gwen C. Littlewort, PhD, co-director of the institute’s Machine Perception Laboratory; Mark G. Frank, PhD, professor of communication, University at Buffalo, and Kang Lee, PhD, Dr. Erick Jackman Institute of Child Study, University of Toronto. 

The study employed two experiments with a total of 205 human observers who were asked to assess the veracity of expressions of pain in video clips of individuals, some of whom were being subjected to the cold presser test in which a hand is immersed in ice water to measure pain tolerance, and of others who were faking their painful expressions.

“Human subjects could not discriminate real from faked expressions of pain more frequently than would be expected by chance,” Frank says. “Even after training, they were accurate only 55 percent of the time. The computer system, however, was accurate 85 percent of the time.”

Bartlett noted that the computer system “managed to detect distinctive, dynamic features of facial expressions that people missed. Human observers just aren’t very good at telling real from faked expressions of pain.”

The researchers employed the computer expression recognition toolbox (CERT), an end-to-end system for fully automated facial-expression recognition that operates in real time. It was developed by Bartlett, Littlewort, Frank and others to assess the accuracy of machine versus human vision.

They found that machine vision was able to automatically distinguish deceptive facial signals from genuine facial signals by extracting information from spatiotemporal facial-expression signals that humans either cannot or do not extract.

“In highly social species such as humans,” says Lee, “faces have evolved to convey rich information, including expressions of emotion and pain. And, because of the way our brains are built, people can simulate emotions they’re not actually experiencing so successfully that they fool other people. The computer is much better at spotting the subtle differences between involuntary and voluntary facial movements.”

Frank adds, “Our findings demonstrate that automated systems like CERT may analyze the dynamics of facial behavior at temporal resolutions previously not feasible using manual coding methods.”

Bartlet says this approach illuminates basic questions pertaining to many social situations in which the behavioral fingerprint of neural control systems may be relevant.

“As with causes of pain, these scenarios also generate strong emotions, along with attempts to minimize, mask and fake such emotions, which may involve ‘dual control’ of the face,” Bartlett says.  

“Dual control of the face means that the signal for our spontaneous felt emotion expressions originate in different areas in the brain than our deliberately posed emotion expressions,” Frank explains, “and they proceed through different motor systems that account for subtle appearance, and in the case of this study, dynamic movement factors.”

The computer-vision system, Bartlett says, “can be applied to detect states in which the human face may provide important clues as to health, physiology, emotion or thought, such as drivers’ expressions of sleepiness, students’ expressions of attention and comprehension of lectures, or responses to treatment of affective disorders.”

The single most predictive feature of falsified expressions, the study showed, is how and when the mouth opens and closes. Fakers’ mouths open with less variation and too regularly. The researchers say further investigations will explore whether such over-regularity is a general feature of fake expressions.

Media Contact Information
Patricia Donovan
Senior Editor, Arts, Humanities, Public Health, Social Sciences
Tel: 716-645-4602
pdonovan@buffalo.edu

Media Contact

Patricia Donovan EurekAlert!

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors