Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OUCH! Computer system spots fake expressions of pain better than people

04.04.2014

The system may also be used to detect deceptive actions in the realms of security and job screening

A joint study by researchers at the University of California, San Diego, the University at Buffalo, and the University of Toronto has found that a computer–vision system can distinguish between real or faked expressions of pain more accurately than can humans.


The researchers used the computer expression recognition toolbox (CERT), an end-to-end system for fully automated facial-expression recognition that operates in real time. UB's Mark Frank was one of CERT's developers.

This ability has obvious uses for uncovering pain malingering — fabricating or exaggerating the symptoms of pain for a variety of motives — but the system also could be used to detect deceptive actions in the realms of security, psychopathology, job screening, medicine and law. 

The study, “Automatic Decoding of Deceptive Pain Expressions,” is published in the latest issue of Current Biology.

The authors are Marian Bartlett, PhD, research professor, Institute for Neural Computation, University of California, San Diego; Gwen C. Littlewort, PhD, co-director of the institute’s Machine Perception Laboratory; Mark G. Frank, PhD, professor of communication, University at Buffalo, and Kang Lee, PhD, Dr. Erick Jackman Institute of Child Study, University of Toronto. 

The study employed two experiments with a total of 205 human observers who were asked to assess the veracity of expressions of pain in video clips of individuals, some of whom were being subjected to the cold presser test in which a hand is immersed in ice water to measure pain tolerance, and of others who were faking their painful expressions.

“Human subjects could not discriminate real from faked expressions of pain more frequently than would be expected by chance,” Frank says. “Even after training, they were accurate only 55 percent of the time. The computer system, however, was accurate 85 percent of the time.”

Bartlett noted that the computer system “managed to detect distinctive, dynamic features of facial expressions that people missed. Human observers just aren’t very good at telling real from faked expressions of pain.”

The researchers employed the computer expression recognition toolbox (CERT), an end-to-end system for fully automated facial-expression recognition that operates in real time. It was developed by Bartlett, Littlewort, Frank and others to assess the accuracy of machine versus human vision.

They found that machine vision was able to automatically distinguish deceptive facial signals from genuine facial signals by extracting information from spatiotemporal facial-expression signals that humans either cannot or do not extract.

“In highly social species such as humans,” says Lee, “faces have evolved to convey rich information, including expressions of emotion and pain. And, because of the way our brains are built, people can simulate emotions they’re not actually experiencing so successfully that they fool other people. The computer is much better at spotting the subtle differences between involuntary and voluntary facial movements.”

Frank adds, “Our findings demonstrate that automated systems like CERT may analyze the dynamics of facial behavior at temporal resolutions previously not feasible using manual coding methods.”

Bartlet says this approach illuminates basic questions pertaining to many social situations in which the behavioral fingerprint of neural control systems may be relevant.

“As with causes of pain, these scenarios also generate strong emotions, along with attempts to minimize, mask and fake such emotions, which may involve ‘dual control’ of the face,” Bartlett says.  

“Dual control of the face means that the signal for our spontaneous felt emotion expressions originate in different areas in the brain than our deliberately posed emotion expressions,” Frank explains, “and they proceed through different motor systems that account for subtle appearance, and in the case of this study, dynamic movement factors.”

The computer-vision system, Bartlett says, “can be applied to detect states in which the human face may provide important clues as to health, physiology, emotion or thought, such as drivers’ expressions of sleepiness, students’ expressions of attention and comprehension of lectures, or responses to treatment of affective disorders.”

The single most predictive feature of falsified expressions, the study showed, is how and when the mouth opens and closes. Fakers’ mouths open with less variation and too regularly. The researchers say further investigations will explore whether such over-regularity is a general feature of fake expressions.


Media Contact Information
Patricia Donovan
Senior Editor, Arts, Humanities, Public Health, Social Sciences
Tel: 716-645-4602
pdonovan@buffalo.edu

Patricia Donovan | EurekAlert!
Further information:
http://www.buffalo.edu/news/releases/2014/04/008.html

Further reports about: Buffalo Human Toronto accurate behavior distinguish emotions explains humans movement pain signals subtle

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>