Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Completes First Phase of Titan Supercomputer Transition

02.03.2012
Oak Ridge National Laboratory’s Jaguar supercomputer has completed the first phase of an upgrade that will keep it among the most powerful scientific computing systems in the world.

Acceptance testing for the upgrade was completed earlier this month. The testing suite included leading scientific applications focused on molecular dynamics, high-temperature superconductivity, nuclear fusion, and combustion.

Jaguar, manufactured by Cray Inc., is operated by the Oak Ridge Leadership Computing Facility (OLCF). Even before this month’s upgrade to 3.3 petaflops it was the United States’ most powerful supercomputer, capable of 2,300 trillion calculations each second, or 2.3 petaflops. The same number of calculations would take an individual working at a rate of one per second more than 70 million years.

When the upgrade process is completed this autumn, the system will be renamed Titan and will be capable of 10 to 20 petaflops. Users have had access to Jaguar throughout the upgrade process.

“During our upgrade, we have kept our users on Jaguar every chance we get,” said Jack Wells, director of science at the OLCF, “We have already seen the positive impact on applications, for example in computational fluid dynamics, from the doubled memory.”

The DOE Office of Science-funded project, which was concluded ahead of schedule, upgraded Jaguar’s AMD Opteron cores to the newest 6200 series and increased their number by a third, from 224,256 to 299,008. Two six-core Opteron processors were removed from each of Jaguar’s 18,688 nodes and replaced with a single 16-core processor. At the same time, the system’s interconnect was updated and its memory was doubled to 600 terabytes.

In addition, 960 of Jaguar’s 18,688 compute nodes now contain an NVIDIA graphical processing unit (GPU). The GPUs were added to the system in anticipation of a much larger GPU installation later in the year. The GPUs act as accelerators, giving researchers a serious boost in computing power in a far more energy-efficient system.

"Applications that were squeezing onto our Cray XT5 nodes can now make full use of the 16-core processor. Doubling the memory can have a dramatic impact on application workflow,” Wells said.

“The new Gemini interconnect is much more scalable,” Wells added, “helping applications like molecular dynamics that have demanding network communication requirements.”

GPUs will add a level of parallelism to the system and allow Titan to reach 10 to 20 petaflops within the same space as Jaguar and with essentially the same power requirements. While the Opteron processors have 16 cores and are therefore able to carry out 16 computing tasks simultaneously, the GPUs will be able to tackle hundreds of computing tasks at the same time.

With nearly 1,000 GPUs now available, researchers will have an opportunity to optimize their applications for the accelerated Titan system.

“This is going to be an exciting year in Oak Ridge as our users take advantage of our new XK6 architecture and get ready for the new NVIDIA Kepler GPUs in the fall,” Wells said. “A lot of work by many people is beginning to pay off.”

UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Leo Williams | Newswise Science News
Further information:
http://science.energy.gov
http://www.ornl.gov

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>