Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organized chaos gets robots going for the Advancement of Science

18.01.2010
Göttingen scientists develop an autonomous walking robot that flexibly switches between many different gaits by using "chaos control"

Even simple insects can generate quite different movement patterns with their six legs. The animal uses various gaits depending on whether it crawls uphill or downhill, slowly or fast. Scientists from Göttingen have now developed a walking robot, which - depending on the situation - can flexibly and autonomously switch between different gaits.


Following the principle of chaos control, the robot produces regular leg movements when walking normally. In addition, it can use the uncontrolled chaotic movement pattern to free itself when its leg is trapped in a hole. Image: Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization

The success of their solution lies in its simplicity: a small and simple network with just a few connections can create very diverse movement patterns. To this end, the robot uses a mechanism for "chaos control". This interdisciplinary work was carried out by a team of scientists at the Bernstein Center for Computational Neuroscience Göttingen, the Physics Department of the Georg-August-University of Göttingen and the Max Planck Institute for Dynamics and Self-Organization. (Nature Physics, January 17th, 2010, advanced online publication)

In humans and animals, periodically recurring movements like walking or breathing are controlled by small neural circuits called "central pattern generators" (CPG). Scientists have been using this principle in the development of walking machines. To date, typically one separate CPG was needed for every gait. The robot receives information about its environment via several sensors - about whether there is an obstacle in front of it or whether it climbs a slope. Based on this information, it selects the CPG controlling the gait that is appropriate for the respective situation.

One single pattern generator for many gaits

The robot developed by the Göttingen scientists now manages the same task with only one CPG that generates entirely different gaits and which can switch between these gaits in a flexible manner. This CPG is a tiny network consisting of two circuit elements. The secret of its functioning lies in the so-called "chaos control". If uncontrolled, the CPG produces a chaotic activity pattern. This activity, however, can very easily be controlled by the sensor inputs into periodic patterns that determine the gait. Depending on the sensory input signal, different patterns - and thus different gaits - are generated.

The connection between sensory properties and CPG can either be preprogrammed or learned by the robot from experience. The scientists use a key example to show how this works: the robot can autonomously learn to walk up a slope with as little energy input as possible. As soon as the robot reaches a slope, a sensor shows that the energy consumption is too high. Thereupon, the connection between the sensor and the control input of the CPG is varied until a gait is found that allows the robot to consume less energy. Once the right connections have been established, the robot has learned the relation between slope and gait. When it tries to climb the hill a second time, it will immediately adopt the appropriate gait.

In the future, the robot will also be equipped with a memory device which will enable it to complete movements even after the sensory input ceases to exist. In order to walk over an obstacle, for instance, the robot would have to take a large step with each of its six legs. "Currently, the robot would not be able to handle this task - as soon as the obstacle is out of sight, it no longer knows which gait to use," says Marc Timme, scientist at the Max Planck Institute for Dynamics and Self-Organization. "Once the robot is equipped with a motor memory, it will be capable to use foresight and plan its movements".

Original work:

Silke Steingrube, Marc Timme, Florentin Wörgötter and Poramate Manoonpong
Self-organized adaptation of a simple neural circuit enables complex robot behaviour

Nature Physics, January 17th, 2010 (DOI: 10.1038/NPHYS1508)

Contact:

Prof. Dr. Marc Timme, Network Dynamics Group, Bernstein Center for Computational Neuroscience
Max Planck Institute for Dynamics and Self-Organization, Göttingen
Tel.: +49 551 / 5176440
E-mail: timme@nld.ds.mpg.de
Dr. Poramate Manoonpong, Bernstein Center for Computational Neuroscience
Georg-August-University of Göttingen, Göttingen
E-mail: poramate@bccn-goettingen.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Information Technology:

nachricht Underwater acoustic localization of marine mammals and vehicles
23.11.2017 | IMDEA Networks Institute

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>