Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optomechanics: Swift light switching at the microscale

13.09.2012
Faster signal storage and optical processing in nanomachined devices edge closer to realization

A system that has only two possible stable states, such as a light switch, is called bistable by scientists and engineers. Bistability in microscale devices could pave the way to compact optical switching and memory elements.

In the bistable systems found so far, however, switching between states takes too long to make the approach practical. Now, thanks to the recent observation of bistability in an array of micrometer-sized rings, fast microscale optical switches in novel photonic devices are a step closer to development.

Yefeng Yu of the A*STAR Data Storage Institute and his co-workers in Singapore and France observed this bistability in a device consisting of two 60-micrometer-wide silicon rings into which they could feed laser light of wavelengths specific to the particular ring geometry they used1. One segment of each ring hung above a gap, and these free-hanging arcs deformed slightly as light flowed through the ring. The deformation of the rings, in turn, changed their optical properties. As a result of this interplay between optical and mechanical forces, the researchers observed stable behavior at two wavelengths of the light; not at one, as expected. By changing the wavelength of the incoming light, Yu and co-workers could conveniently switch between these two states.

“To our knowledge, this is the first time that optical bistability has been induced by optical forces acting on mechanical motion,” explains Yu. “Similar phenomena are usually produced by thermal effects.” Relying on heating mechanisms, however, means that the typical times required to switch between the two stable states are relatively long, on the order of milliseconds. Using optical effects gave Yu and his co-workers a much faster means to control the switching process. “The switching time in our system is currently at the microsecond level,” says Yu. “But there is some space for reducing this time through design optimization.”

This thousand-fold acceleration should assist practical applications. The two stable states of the system, for example, can be used to encode information in terms of ‘zeros’ and ‘ones’, as it is in digital computers. But instead of using electrons to process information, the two states of Yu and his co-workers’ optomechanical device should allow the representation of information.

“We envisage using our new system to implement optical logic gates for data processing,” Yu says. But there may be many more possible uses for these devices. “Applications we want to explore include tunable lasers, biosensor and optomechanical memories.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Yu, Y. F., Zhang, J. B., Bourouina, T. & Liu A. Q. Optical-force-induced bistability in nanomachined ring resonator systems. Applied Physics Letters 100, 093108 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>