Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optomechanics: Swift light switching at the microscale

13.09.2012
Faster signal storage and optical processing in nanomachined devices edge closer to realization

A system that has only two possible stable states, such as a light switch, is called bistable by scientists and engineers. Bistability in microscale devices could pave the way to compact optical switching and memory elements.

In the bistable systems found so far, however, switching between states takes too long to make the approach practical. Now, thanks to the recent observation of bistability in an array of micrometer-sized rings, fast microscale optical switches in novel photonic devices are a step closer to development.

Yefeng Yu of the A*STAR Data Storage Institute and his co-workers in Singapore and France observed this bistability in a device consisting of two 60-micrometer-wide silicon rings into which they could feed laser light of wavelengths specific to the particular ring geometry they used1. One segment of each ring hung above a gap, and these free-hanging arcs deformed slightly as light flowed through the ring. The deformation of the rings, in turn, changed their optical properties. As a result of this interplay between optical and mechanical forces, the researchers observed stable behavior at two wavelengths of the light; not at one, as expected. By changing the wavelength of the incoming light, Yu and co-workers could conveniently switch between these two states.

“To our knowledge, this is the first time that optical bistability has been induced by optical forces acting on mechanical motion,” explains Yu. “Similar phenomena are usually produced by thermal effects.” Relying on heating mechanisms, however, means that the typical times required to switch between the two stable states are relatively long, on the order of milliseconds. Using optical effects gave Yu and his co-workers a much faster means to control the switching process. “The switching time in our system is currently at the microsecond level,” says Yu. “But there is some space for reducing this time through design optimization.”

This thousand-fold acceleration should assist practical applications. The two stable states of the system, for example, can be used to encode information in terms of ‘zeros’ and ‘ones’, as it is in digital computers. But instead of using electrons to process information, the two states of Yu and his co-workers’ optomechanical device should allow the representation of information.

“We envisage using our new system to implement optical logic gates for data processing,” Yu says. But there may be many more possible uses for these devices. “Applications we want to explore include tunable lasers, biosensor and optomechanical memories.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Yu, Y. F., Zhang, J. B., Bourouina, T. & Liu A. Q. Optical-force-induced bistability in nanomachined ring resonator systems. Applied Physics Letters 100, 093108 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>