Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimization server reaches two million milestone

18.02.2010
NEOS, the Network-Enabled Optimization System developed by researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory in conjunction with Northwestern University, has reached a new milestone: two million submissions to its optimization software.

NEOS has been used extensively for a variety of applications, including modeling electricity markets, predicting global protein folding and training artificial neural networks.

The NEOS Server is operated with support from DOE.
Optimization technology is essential to engineers, scientists, businesses and students. But solving optimization problems can be tedious and time-consuming. Key to the success of NEOS is its removal of obstacles that prevent the rapid solution of complex optimization problems.

Using flexible combinations of World Wide Web tools, remote procedure calls and email, researchers can access the NEOS server and have their optimization problems solved automatically, without installing software, downloading and linking code, or writing driver subroutines. Users of NEOS can obtain a solution in a matter of hours instead of days.

“Because of its ease of use and generality, NEOS has gained tremendous popularity,” said Jorge Moré, an Argonne Distinguished Fellow who has guided the development of NEOS since its inception a decade ago. In 1999, there were fewer than 18,000 submissions to NEOS. Today NEOS is the premier source of optimization technology on the Web for users of optimization software, with over 235,00 submissions in 2009.

Using the NEOS server is easy. The user selects a program, or “solver,” for a particular type of optimization problem. In order to help with the choice, an “optimization tree” provides suggestions, and each solver comes with sample problems and background information. Once the user has selected the solver, NEOS compiles all subroutines, links with the appropriate libraries, and carries out the necessary computations. The user is then sent the solution, along with various runtime statistics.

The two million milestone also reflects the growing use of the NEOS server by students and faculty in both undergraduate and graduate classes.

“By providing free access to the most recent and best optimization software, NEOS enables students to experiment with a broad variety of solvers and to attack problems substantially larger than typical classroom examples,” said Todd Munson, an Argonne computer scientist who has been an architect of NEOS. “This use provides a strong and lasting foundation for future optimization research.”

The NEOS team, consisting of Moré, Munson, Liz Dolan (a graduate student working at Argonne), and Bob Fourer (their colleague at Northwestern), won the prestigious Beale-Orchard-Hays Prize in 2003 for excellence in computational optimization. In presenting this prize, which is awarded only once every three years, the Mathematical Programming Society noted: “The NEOS Server has had a tremendous impact in the field of optimization. The influence of NEOS is such that in many applied fields the NEOS Server is synonymous with optimization.”

The NEOS Server is operated with support from DOE. For more information about NEOS, please visit the web site: www-neos.mcs.anl.gov.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Eleanor Taylor (630/252-5510 or media@anl.gov) at Argonne.

Follow Argonne on Twitter at http://twitter.com/argonne

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>