Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical firewall aims to clear internet security bottlenecks

31.10.2008
European researchers are developing the world’s first optical firewall capable of analysing data on fibre optic networks at speeds of 40 gigabits per second. Their work promises to save the internet from the looming threat of network security bottlenecks.

As demand for data-intensive services, such as video-on-demand and online gaming increases, telecommunications providers are expanding the high-speed fibre optic networks that form the backbone of the internet. But while network performance has improved, the electronic processes and algorithms used to filter data for security threats are struggling to keep pace.

With demand for data-intensive services only likely to intensify further in the future, bottlenecks seem inevitable unless security processes can be implemented at optical network speeds.

“The amount of data being transmitted can and will get much higher as data-intensive services become more commonplace,” says Graeme Maxwell, the vice-president for Integration Technologies at CIP Technologies in the UK.

“Even with mobile phones, the data sent over 3G networks ends up on a fibre optic cable very quickly, in as little as two or three hops... It’s the data analogy of many little streams quickly feeding into a river and causing a massive flood.”

Add to the growth of wireless communications the expansion of fixed-line and cable broadband services in homes and offices, and, according to some estimates, traditional electronic security processes will soon be unable to cope.

“There is a real need for an optical security solution – and that is what we are developing,” Maxwell says.

Working in the EU-funded WISDOM project, Maxwell leads a team of researchers who have demonstrated novel optical circuits capable of searching for and identifying target data patterns at wire speeds of 40Gb/s – the fastest data rate of current commercial networks. Using custom algorithms, their groundbreaking optical firewall looks for patterns in the header content of data packets (the part of the data containing information about the sender, recipient and format) to single out possible viruses, attacks or other threats.

“Our goal is not to replace electronics with optics but to complement existing security processes,” Maxwell notes.

Filtering threats optically

The WISDOM firewall acts as a kind of primary, high-speed filter that routes suspect packets to electronic processes for further analysis. It is able to carry out optical packet recognition, interrogation and manipulation of data streams incorporating features of parity checking, flag status, and header recognition. And, because there is no optical equivalent of electronic memory, the entire process has to be carried out on the fly.

Described as an “optical firewall on a chip”, the system is built on a state-of-the-art hybrid integrated photonic technology platform developed by CIP in which silica-on-silicon circuits form an optical equivalent of an electronic printed circuit board (PCB). Much like a PCB can host different electronic components depending on its intended use, different optical and optoelectronic components can be fitted to the optical circuit board, resulting in a cost-effective and scalable solution.

The hybrid boards can also be fitted with components fit for other uses, with the WISDOM project partners foreseeing applications in sensor systems, avionics, data transmission and optical processing, as well as network security.

“Think about all the applications for today’s electronic PCBs – they are everywhere! Optical boards could have a similar range of uses in the future,” the project coordinator says.

Indeed, Maxwell expects the first commercial application of the boards to be for data transmission over fibre optic networks, with their implementation for network security likely to follow within the next five years.

“The WISDOM project is demonstrating the functionality of an optical firewall, hopefully to the point where we can bring additional manufacturers onboard in a follow-up project,” Maxwell says.

He admits that the idea of an optical firewall is still a new concept to many in the network security sector.

“There are barriers to its acceptance that need to be overcome,” he notes.

However, having survived the bursting of the dot.com bubble eight years ago that led many research groups trying to develop optical security solutions to disband, the research team, which launched the WISDOM project in 2006 with funding from the EU’s Sixth Framework Programme, are well placed to rise to the challenge.

And, with the recent boom in data-intensive services, their solution is likely to be in high demand.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90127

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>